

Applications and
Dynamic Input Areas

Palm OS

®

 5 SDK (68K) R3

CONTRIBUTORS

Written by Jean Ostrem and Christopher Bey
Engineering contributions by Grant Glouser, Rachid Hasnou, Ezekiel Sanborn de Asis, Andy Stewart

Copyright © 2003, PalmSource, Inc. and its affiliates. All rights reserved. This documentation may be
printed and copied solely for use in developing products for Palm OS

®

 software. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the foregoing, no
part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation or adaptation) without express written
consent from PalmSource, Inc.

PalmSource, Inc. reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of PalmSource, Inc. to provide notification of such revision or
changes.

PALMSOURCE, INC. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR WARRANTIES THAT
THE DOCUMENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR
YOUR USE. THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALMSOURCE, INC. AND
ITS SUPPLIERS MAKE NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER
IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES,
TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
SATISFACTORY QUALITY. TO THE FULL EXTENT ALLOWED BY LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF
OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN IF PALMSOURCE, INC. OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMessenger,
MultiMail, Palm.Net, PalmPak, PalmConnect, PalmGlove, PalmModem, PalmPoint, PalmPrint, and
PalmSource are registered trademarks of PalmSource, Inc. or its affiliates. Palm, the Palm logo, MyPalm,
PalmGear, PalmPix, PalmPower, AnyDay, EventClub, HandMAIL, the HotSync logo, PalmGlove, Palm
Powered, the Palm trade dress, Smartcode, Simply Palm, ThinAir, WeSync, and Wireless Refresh are
trademarks of PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or
registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT
ACCOMPANYING THE COMPACT DISC.

Applications and Dynamic Input Areas
Document Number 3106-002
August 28, 2003

PalmSource, Inc.
1240 Crossman
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmsource.com

Applications and Dynamic Input Areas

iii

Table of Contents

 About This Document v

What This Book Contains v
Additional Resources . v

1 Applications and the Dynamic Input Area 1

The Dynamic Input Area Feature 2
Size Constraints . 3
Input Area Policy . . 5

Setting the Input Area Policy. 5
Enabling the Input Trigger. 6
Setting an Input Area State 6

Resizing a Form . 7
Hiding and Showing the Control Bar 10
Pen Input Manager Compatibility. 10

New sysFtrNumInputAreaFlags Support 11
Additional winDisplayChangedEvent 11
Restoration of Input Trigger State. 12
New pinInputAreaUser Input Area State 12
New Stat... Functions 13
New Support for Changing Display Orientation 13

2 Pen Input Manager Reference 15

Pen Input Manager Constants 15
sysNotifyDisplayResizedEvent. 15
winDisplayChangedEvent. 16
Input Area States . 16
Input Trigger States. 17
Form Dynamic Input Area Policies 17
Orientation States 18
Orientation Trigger States 19

Pen Input Manager Functions 20
PINGetInputAreaState 20
PINGetInputTriggerState 20
PINSetInputAreaState 21

iv

 Applications and Dynamic Input Areas

PINSetInputTriggerState 22
Other Functions . 22

FrmGetDIAPolicyAttr 23
FrmSetDIAPolicyAttr 23
StatGetAttribute . 24
StatHide . 25
StatShow . 25
SysGetOrientation 26
SysSetOrientation 27
SysGetOrientationTriggerState 27
SysSetOrientationTriggerState 28
WinSetConstraintsSize 29

 Index 31

Applications and Dynamic Input Areas

v

About This

Document

This book describes how to write an application that works with a
dynamic input area. A

dynamic input area

 is a software
implementation of the input area that is traditionally silkscreened
onto the device. Implementing the area as software allows the user
to expand and collapse the area at will, giving more space to the
display of application data when it is needed.

What This Book Contains

This book contains the following information:

• Chapter 1, “Applications and the Dynamic Input Area,” on
page 1 describes how to modify your application so that it
responds to the dynamic input area appropriately.

• Chapter 2, “Pen Input Manager Reference,” on page 15
provides reference material for the new APIs.

Additional Resources

• Documentation

PalmSource publishes its latest versions of documents for
Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training

About This Document

Additional Resources

vi

 Applications and Dynamic Input Areas

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/support/kb/

Applications and Dynamic Input Areas

1

1

Applications and the

Dynamic Input Area

On most existing Palm Powered

™

 handhelds, Palm OS

®

 applications
are drawn in a fixed space that is 160 X 160 pixels or 320 X 320 pixels
in size, depending on the device’s screen density. The input area,
where the user enters characters, is silkscreened onto such devices.
Some Palm Powered handhelds have

dynamic input areas

, as
shown in Figure 1.1, that users can close when they do not need to
enter characters. (Tapping the arrow in the lower right closes the
input area, leaving a smaller control bar visible.)

On these devices, the application area is not fixed—it is the
traditional square size while the input area is opened, and it is a
rectangular size when the input area is closed, giving more space to
the application.

Figure 1.1 Closable Dynamic Input Area

A control bar at the bottom of the screen, shown in Figure 1.2,
contains various buttons, including one called the trigger (the arrow
at the right in this example), that opens the input area when it is
closed. A trigger also typically appears in the input area to provide a
way for the user to close the input area.

Figure 1.2 Control Bar

Applications and the Dynamic Input Area

The Dynamic Input Area Feature

2

 Applications and Dynamic Input Areas

The control bar is typically closed when the input area is open,
except on double density screens, when it is always shown;
however, licensees can change this behavior.

To take advantage of the additional screen space, your application
must respond when the input area is opened or closed and redraw
the current form in the available application space. This document
describes how to do so.

To make your application work with a dynamic input area, do the
following:

1. Check the feature to make sure that the API described in this
document is available. (See “The Dynamic Input Area
Feature” on page 2.)

2. Call

WinSetConstraintsSize

 to set the size constraints
for each form in response to the

frmLoadEvent

 or

frmOpenEvent

. (See “Size Constraints” on page 3.)
3. Set up each form in your application to work with the Pen

Input Manager in response to the

frmLoadEvent

 or

frmOpenEvent

, and the

winEnterEvent

. This involves
calling

FrmSetDIAPolicyAttr

,

PINSetInputTriggerState

, and

PINSetInputAreaState

. (See “Input Area Policy” on
page 5.)

4. Respond to the

sysNotifyDisplayResizedEvent

notification by posting a

winDisplayChangedEvent

 and
then in this event handler, redraw the form in the available
space. (See “Resizing a Form” on page 7.)

NOTE:

Note that if an application does not call

FrmSetDIAPolicyAttr

 before a form is drawn, the system
assumes it is a legacy form that doesn’t support a closable input

area. In this case, the input area is drawn without a trigger.

The Dynamic Input Area Feature

Before you can use any of the API described in this document, you
must make sure that the dynamic input area API is available. Test
the

pinFtrAPIVersion

 feature as shown in Listing 1.1

Applications and the Dynamic Input Area

Size Constraints

Applications and Dynamic Input Areas

3

Listing 1.1 Checking the dynamic input area feature

err = FtrGet(pinCreator, pinFtrAPIVersion, &version);
if (!err && version) {
 //PINS exists

}

If this feature is defined, a new manager called the

Pen Input
Manager

 controls the input area and notifies the application of any
changes in the input area state.

NOTE:

Version 1.1 (

pinAPIVersion1_1

) of the Pen Input
Manager is slightly different from version 1.0
(

pinAPIVersion1_0

). It doesn’t matter which version you find;
you should write your application to be compatible with both, as

described in the following sections.

Size Constraints

After you’ve determined that the Pen Input Manager is available,
you need to let it know the

size constraints

 for each form in your
application. You do so by calling the function

WinSetConstraintsSize

 when the form is loaded; that is, in
response to the

frmLoadEvent

. (Alternately, you can do this on a

frmOpenEvent

.)

The

WinSetConstraintsSize

 function takes seven parameters:
the handle to the form’s window, the minimum, preferred, and
maximum heights for the form, and the minimum, preferred, and
maximum widths for the form. The Pen Input Manager uses this
information to determine whether the form supports a closed input
form.

If you don’t specify size constraints, the Pen Input Manager
assumes that the minimum, maximum, and preferred height and
width are all 160 standard coordinates. In this way, legacy
applications are always sized appropriately when the input area is
open.

Applications and the Dynamic Input Area

Size Constraints

4

 Applications and Dynamic Input Areas

Listing 1.2 shows how you might call

WinSetConstraintsSize

for an application with three forms: a main form, and edit form, and
a password dialog.

WinSetConstraintsSize

 must be called in
response to the

frmLoadEvent or frmOpenEvent. You typically
handle the frmLoadEvent in the your application’s
AppHandleEvent, so you would place this code in your
application’s AppHandleEvent function.

Listing 1.2 Setting the size constraints

if (eventP->eType == frmLoadEvent) {
 // Load the form resource.
 formId = eventP->data.frmLoad.formID;
 frmP = FrmInitForm(formId);
 FrmSetActiveForm(frmP);

 // Set the same policy for each form in application.
 err = FrmSetDIAPolicyAttr(frmP, frmDIAPolicyCustom);

 // Enable the input trigger
 err = PINSetInputTriggerState(pinInputTriggerEnabled);

 formWinH = FrmGetWindowHandle (frmP);
// Set the event handler for the form, and set each form’s
// size requirements.
 switch (formId) {
 case MainForm:
 FrmSetEventHandler(frmP, MainFormHandleEvent);
 WinSetConstraintsSize(formWinH, 80, 160, 225,
 160, 160, 160);
 break;

 case EditForm:
 FrmSetEventHandle(frmP, EditFormHandleEvent);
 WinSetConstraintsSize(formWinH, 100, 160, 225,
 160, 160, 160);
 break;

 case PasswordDialog:
 FrmSetEventHandler(frmP, PasswordDialogHandleEvent);
 FrmSetDIAPolicyAttr(frmPolicyStayOpen);
 break;

 default:
 break;
 }

Applications and the Dynamic Input Area
Input Area Policy

Applications and Dynamic Input Areas 5

 return true;
}

In Listing 1.2, WinSetConstraintsSize is called once for each
form in the application. There is currently nothing that should
resize a form’s width, so each of these calls uses 160 for all of the
width parameters. The full-screen forms prefer to be 160 pixels high
because the application uses these same forms when running on
older devices that use static input areas; however, it’s acceptable for
the main form to be as short as 80 pixels and the Edit form to be as
short as 100 pixels if the input area needs more space. Finally, the
input area should not be closable for the password dialog because it
is needed to enter the password.

Input Area Policy
To set up your application’s forms to work with the Pen Input
Manager, you must do the following for each form:

• Set an input area policy using the function
FrmSetDIAPolicyAttr to let the system know that the
form will resize itself when the input area is opened and
closed. Do so in response to the frmLoadEvent or
frmOpenEvent.

• Enable the input trigger, which is what the user uses to open
and close the input area, using the function
PINSetInputTriggerState. An example of the trigger is
the lower right arrow shown in Figure 1.1 and Figure 1.2 on
page 1.

Setting the Input Area Policy
The input area policy that you set with FrmSetDIAPolicyAttr
specifies whether your form supports a dynamic input area. Listing
1.2 shows how you might call FrmSetDIAPolicyAttr in your
application’s AppHandleEvent.

Most forms should use a policy of frmDIAPolicyCustom. If not,
the system treats your form as it does all forms in a legacy
application. It opens the input area when the form is opened so that
the form has the normal square area in which to draw, and it

Applications and the Dynamic Input Area
Input Area Policy

6 Applications and Dynamic Input Areas

disables the input trigger so that the user cannot close the input area
while your form is being displayed.

NOTE: Future Palm OS versions might not disable the input
trigger for legacy applications or forms.

The input area policy is set on a form-by-form basis rather than an
application-by-application basis because each form might have
different requirements for the input area. A form that relies heavily
on user input might need to ensure that the input area is opened
while the form is active. However, a form that has no editable fields,
like an address list, may want to keep the input area closed so that
more information is visible.

Enabling the Input Trigger
For each form in your application that uses the policy
frmDIAPolicyCustom, you can enable the input area’s input
trigger. Use the function PINSetInputTriggerState to enable
the trigger (see Listing 1.2).

You must enable the input trigger for each form because a system
dialog might disable it. System dialogs appear on top of your
application’s forms. When the dialog is dismissed and control
returns to your application, the input trigger may be disabled. You
won’t receive a frmLoadEvent or frmOpenEvent because your
form is already loaded and opened. Instead, you get the
winEnterEvent. Therefore, to make sure your users can open and
close the input area while your application is active, even after a
system dialog is displayed, you must enable the trigger in response
to the winEnterEvent.

Note that the key code associated with the input trigger button is
vchrInputAreaControl, so a keyDownEvent with this character
is enqueued whenever the trigger is tapped.

Setting an Input Area State
Most forms should not set a state for the input area. They should let
the user decide whether the input area is open or closed.

Applications and the Dynamic Input Area
Resizing a Form

Applications and Dynamic Input Areas 7

In rare cases, it may be beneficial for the form to decide whether the
input area is opened or closed. For example, you might have a tall
form that closes the input area so that the user can see the entire
form without scrolling.

You can set the input area state by using the function
PINSetInputAreaState. Specify the value pinInputAreaUser
to set the state to the last user-selected state.

Be careful not to set the input area state too much. If the input area is
opened and closed automatically in too many instances, the result
may be a jumpy user interface that produces a jarring user
experience. It is probably best to let your users decide what they
want to do.

Resizing a Form
When the Pen Input Manager opens or closes the input area or
control bar or changes the display orientation, it broadcasts the
sysNotifyDisplayResizedEvent notification to all
applications that have registered for it.

When the application receives the
sysNotifyDisplayResizedEvent, it must post a
winDisplayChangedEvent (using
EvtAddUniqueEventToQueue), which forms can handle to resize
themselves.

Listing 1.3 Posting a winDisplayChangedEvent

case sysAppLaunchCmdNotify:
 if (((SysNotifyParamType*) cmdPBP)->notifyType ==
 sysNotifyDisplayResizedEvent)
 {
 EventType resizedEvent;
 MemSet(&resizedEvent, sizeof(EventType), 0);
 //add winDisplayChangedEvent to the event queue
 resizedEvent.eType = winDisplayChangedEvent;
 EvtAddUniqueEventToQueue(&resizedEvent, 0, true);
 }
 break;

Applications and the Dynamic Input Area
Resizing a Form

8 Applications and Dynamic Input Areas

It’s possible for the input area to change state while a menu is open.
To handle this case, an application should also enqueue a
winDisplayChangedEvent (using code similar to Listing 1.3)
when it receives a winEnterEvent.

The notification contains a rectangle specifying the new bounds for
the current form. In general, forms should respond to the closing of
the input area by moving any command buttons to the bottom of
the new rectangle and by resizing the data area of the display.

Listing 1.4 shows a simple example of handling the
winDisplayChangedEvent.

Listing 1.4 Handling winDisplayChangedEvent

// Input area was opened or was closed. Must resize form.
case winDisplayChangedEvent:
 // get the current bounds for the form
 frmP = FrmGetActiveForm();
 WinGetBounds (FrmGetWindowHandle(frmP), &curBounds);

 // get the new display window bounds
 WinGetBounds(WinGetDisplayWindow(), &displayBounds);

 EditFormResizeForm(frmP, &curBounds, &displayBounds);
 FrmDrawForm(frmP);
 handled = true;
 break;

This example is for a form containing one multi-line text field, a
scroll bar, and several command buttons at the bottom of the form.
It responds to the winDisplayChangedEvent by passing the
form’s current bounds and new bounds to a function named
EditFormResizeForm, which is shown in Listing 1.5. This
function determines the difference between the current height and
width and the new height and width and then applies that
difference to the objects in the form. For the command buttons, it
changes their position so that they always appear at the bottom of
the form. For the text field and scroll bar, it resizes them so that the
more text lines are displayed on the screen.

Note that after resizing a form with a text field, it is a good idea to
call FldRecalculateField to update the word-wrapping for the
field’s new size.

Applications and the Dynamic Input Area
Resizing a Form

Applications and Dynamic Input Areas 9

Listing 1.5 Resizing a form

void EditFormResizeForm(FormType *frmP,
RectangleType* fromBoundsP, RectangleType* toBoundsP)
{
 Int16 heightDelta, widthDelta;
 UInt16 numObjects, i;
 Coord x, y;
 RectangleType objBounds;

 heightDelta = widthDelta = 0;
 numObjects = 0;
 x = y = 0;
 FieldType* fldP;

 // Determine the amount of the change
 heightDelta=(toBoundsP->extent.y - toBoundsP->topLeft.y) -
 (fromBoundsP->extent.y - fromBoundsP->topLeft.y);
 widthDelta=(toBoundsP->extent.x - toBoundsP->topLeft.x) -
 (fromBoundsP->extent.x - fromBoundsP->topLeft.x);

 // Iterate through objects and re-position them.
 // This form consists of a big text field and
 // command buttons. We move the command buttons to the
 // bottom and resize the text field to display more data.
 numObjects = FrmGetNumberOfObjects(frmP);
 for (i = 0; i < numObjects; i++) {
 switch (FrmGetObjectType(frmP, i)) {
 case frmControlObj:
 FrmGetObjectPosition(frmP, i, &x, &y);
 FrmSetObjectPosition(frmP, i, x + widthDelta, y +
 heightDelta);
 break;
 case frmFieldObj:
 case frmScrollBarObj:
 FrmGetObjectBounds(frmP, i, &objBounds);
 objBounds.extent.x += widthDelta;
 objBounds.extent.y += heightDelta;
 FrmSetObjectBounds(frmP, i, &objBounds);
 fldP = (FieldType*) FrmGetObjectPtr(frmP, i);
 FldRecalculateField(fldP, false);
 break;
 }
 }
}

Applications and the Dynamic Input Area
Hiding and Showing the Control Bar

10 Applications and Dynamic Input Areas

Hiding and Showing the Control Bar
There are two functions that applications can use to hide and show
the control bar: StatHide and StatShow.

It’s best not to manually hide or show the control bar, but there may
be some situations in which an application needs to draw to the
entire display area and thus must hide the control bar. However, if
the control bar is hidden, this prevents users from exiting to the
Launcher or opening the input area. If the control bar is hidden, you
must provide a mechanism for the user to exit the application or to
show the control bar.

To determine if the control bar is hidden or showing, you can call
StatGetAttribute with the statAttrBarVisible selector.
You can obtain the bounds of the control bar by using the
statAttrDimension selector.

Note that the Stat... functions are available only in Pen Input
Manager version 1.1.

Pen Input Manager Compatibility
Pen Input Manager version 1.1 was introduced with Palm OS
version 5.3SC. There are some differences between Pen Input
Manager version 1.1 and version 1.0.

The version of the Pen Input Manager is returned in the version
parameter of the following FtrGet call:

err = FtrGet(pinCreator, pinFtrAPIVersion, &version);

We recommend writing your application to be compatible with all
versions of the Pen Input Manager. It will be compatible if you
follow the guidelines in this book.

This section documents the differences in version 1.1 so that you
know the details. They include:

• New sysFtrNumInputAreaFlags Support

• Additional winDisplayChangedEvent

• Restoration of Input Trigger State

Applications and the Dynamic Input Area
Pen Input Manager Compatibility

Applications and Dynamic Input Areas 11

• New pinInputAreaUser Input Area State

• New Stat... Functions

• New Support for Changing Display Orientation

New sysFtrNumInputAreaFlags Support
The presence of the Pen Input Manager in version 1.1 does not
indicate the capabilities of the device. In version 1.0, the device
supports all of the following features, and the flags are not
implemented.

In version 1.1, you must test another feature,
sysFtrNumInputAreaFlags, to determine if the device supports
a dynamic input area, live ink, and a closable dynamic input area.

err = FtrGet(sysFtrCreator, sysFtrNumInputAreaFlags, &flags)

A selector is available to determine if the OS supports the dynamic
input area. If the grfFtrInputAreaFlagDynamic flag is set to 0,
or FtrGet returns an error, then the dynamic input area is not
supported. Likewise, if the grfFtrInputAreaFlagCollapsible
flag is set to 0, or if FtrGet returns an error, then a closable
dynamic input area is not supported.

The flags argument is initialized using bits defined in
Graffiti.h:

#define grfFtrInputAreaFlagDynamic 0x00000001
#define grfFtrInputAreaFlagLiveInk 0x00000002
#define grfFtrInputAreaFlagCollapsible 0x00000004

Additional winDisplayChangedEvent
Version 1.1 of the Pen Input Manager uses an additional mechanism
for notifying applications that the input area or control bar has
opened or closed. Version 1.0 sends the
sysNotifyDisplayResizedEvent notification, while version
1.1 sends this notification and also the
winDisplayChangedEvent.

To be compatible with both versions, an application should post a
winDisplayChangedEvent (using

Applications and the Dynamic Input Area
Pen Input Manager Compatibility

12 Applications and Dynamic Input Areas

EvtAddUniqueEventToQueue) when the
sysNotifyDisplayResizedEvent notification is received.
Listing 1.3 shows how to do this.

Restoration of Input Trigger State
With Pen Input Manager version 1.1, if you set an input area policy
of frmDIAPolicyCustom but don’t call
PINSetInputTriggerState to enable or disable the trigger or
call PINSetInputAreaState to open or close the input area, then
the system automatically restores the last user-selected input area
state and enables the trigger (1.0 doesn’t do this). If
PINSetInputAreaState and/or PINSetInputTriggerState
is called by the application, however, then the form’s resulting state
is restored when the form is updated due to a call to FrmDrawForm
or a WinEnterEvent.

With Pen Input Manager version 1.0, you must enable the input
trigger for each form because a system dialog might disable it.
System dialogs appear on top of your application’s forms. System
dialogs use the same input area policy as legacy applications do: the
input area is opened and the user is not allowed to close it. When
the dialog is dismissed and control returns to your application, the
input trigger will still be disabled. You won’t receive a
frmLoadEvent or frmOpenEvent because your form is already
loaded and opened. Instead, you get the winEnterEvent.
Therefore, to make sure your users can open and close the input
area while your application is active, even after a system dialog is
displayed, you must enable the trigger in response to the
winEnterEvent.

New pinInputAreaUser Input Area State
Pen Input Manager version 1.1 implements a new input area state:
pinInputAreaUser. However, you can use this state in
applications designed to run in both 1.0 and 1.1 environments,
because it will simply be ignored in 1.0.

Applications and the Dynamic Input Area
Pen Input Manager Compatibility

Applications and Dynamic Input Areas 13

New Stat... Functions
The following new functions are implemented in Pen Input
Manager version 1.1, but not in version 1.0:

StatGetAttribute, StatHide, and StatShow

It’s best not to use these functions in order to be compatible with
devices running Pen Input Manager version 1.0.

New Support for Changing Display Orientation
Pen Input Manager version 1.1 implements support for changing
the display orientation between portrait, landscape, and the reverse
of each. This allows the display to be rotated to any of the four
possible directions.

The following functions support the display orientation feature:
SysGetOrientation, SysSetOrientation,
SysGetOrientationTriggerState,
SysSetOrientationTriggerState.

Not all devices support changing the display orientation. For
devices that don’t support changing the display orientation, the
only valid orientation is portrait.

NOTE: Orientation support is implemented only in Pen Input
Manager version 1.1 in Palm OS version 5.3. Pen Input Manager
version 1.1 is available on earlier OS versions, but depending on
licensee support, may or may not include this feature. To check if
this function is implemented in Pen Input Manager 1.1 in a Palm
OS version earlier than 5.3, you must use SysGlueTrapExists.

Applications and the Dynamic Input Area
Pen Input Manager Compatibility

14 Applications and Dynamic Input Areas

Applications and Dynamic Input Areas 15

2
Pen Input Manager
Reference
This chapter provides reference material for the Pen Input Manager
API as declared in the header file PenInputMgr.h. It discusses the
following topics:

• Pen Input Manager Constants

• Pen Input Manager Functions

• Other Functions

Pen Input Manager Constants

sysNotifyDisplayResizedEvent
The sysNotifyDisplayResizedEvent notification is broadcast
by PINSetInputAreaState after the dynamic input area or
control bar has been opened or closed. Normally, the user opens
and closes the dynamic input area and control bar, but applications
may also do so, though this is not encouraged.

Applications may respond to the notification by redrawing the
active form in the available space.

#define sysNotifyDisplayResizedEvent 'scrs'

sysNotifyDisplayResizedEvent Specific Data

notifyDetailsP points to a
SysNotifyDisplayResizedDetailsType structure.

Pen Input Manager Reference
Pen Input Manager Constants

16 Applications and Dynamic Input Areas

Prototype typedef struct SysNotifyDisplayResizedDetailsTag
{
 RectangleType newBounds;
} SysNotifyDisplayResizedDetailsType;

Fields newBounds The new bounds of the application area after
the input area or control bar has been opened
or closed. The application should draw the
current form within these bounds.

winDisplayChangedEvent
In Pen Input Manager version 1.1, the event
winDisplayChangedEvent is posted by
PINSetInputAreaState after the dynamic input area has been
opened or closed. Normally, the user opens and closes the dynamic
input area, but applications may also do so.

Applications may respond to the event by redrawing the active
form in the available space.

By the time the application receives this event, the OS has already
changed the bounds of the display window as appropriate to the
state of the input area. The application must resize its active form’s
window and relayout the form accordingly.

Input Area States
Table 2.1 lists constants that define the states that the input area can
have. An application can obtain the input area’s current state with
PINGetInputAreaState and set it with
PINSetInputAreaState.

Table 2.1 Input area states

Constant Value Description

pinInputAreaOpen 0 The dynamic input area is being displayed.

pinInputAreaClosed 1 The dynamic input area is not being
displayed.

Pen Input Manager Reference
Pen Input Manager Constants

Applications and Dynamic Input Areas 17

Input Trigger States
Table 2.2 lists constants that specify the state of the input area icon in
the status bar. An application can obtain this state with
PINGetInputTriggerState and set it with
PINSetInputTriggerState.

Form Dynamic Input Area Policies
A dynamic input area policy specifies how the dynamic input area
should be handled while a form is active. These values are used for

The dynamic input area is in this state after
the user taps the input trigger to close it.
An application also might request that the
dynamic input area be closed by calling
PINSetInputAreaState with this state.

pinInputAreaNone 2 The input area is not dynamic, or there is
no input area. Do not pass this value to
PINSetInputAreaState.

pinInputAreaUser 5 Pass this value to
PINSetInputAreaState to tell the Pen
Input Manager to activate the last user-
selected input area state.

Table 2.1 Input area states (continued)

Constant Value Description

Table 2.2 Input trigger states

Constant Value Description

pinInputTriggerEnabled 0 The input trigger is enabled, meaning that
the user is allowed to open and close the
dynamic input area.

pinInputTriggerDisabled 1 The input trigger is disabled, meaning that
the user is not allowed to close the
dynamic input area.

pinInputTriggerNone 2 There is no dynamic input area.

Pen Input Manager Reference
Pen Input Manager Constants

18 Applications and Dynamic Input Areas

the diaPolicy attribute in a form’s attribute structure. You can set
the value with FrmSetDIAPolicyAttr and retrieve it with
FrmGetDIAPolicyAttr.

Orientation States
Table 2.4 lists constants that specify the display orientation. An
application can obtain this state with SysGetOrientation and set
it with SysSetOrientation.

Table 2.3 Form dynamic input area policy constants

Constant Value Description

frmDIAPolicyStayOpen 0 Forces the dynamic input
area to stay open while the
form is active. The input
trigger is disabled.

frmDIAPolicyCustom 1 The user and the
application control
whether the input area is
active.

Table 2.4 Orientation state constants

Constant Value Description

sysOrientationUser 0 Pass this value to
SysSetOrientation to tell the
system to activate the last user-
selected orientation.

sysOrientationPortrait 1 The display is in portrait
orientation.

sysOrientationLandscape 2 The display is in landscape
orientation.

Pen Input Manager Reference
Pen Input Manager Constants

Applications and Dynamic Input Areas 19

Orientation Trigger States
Table 2.5 lists constants that specify the state of the orientation icon
in the status bar (the icon that allows the user to change the display
orientation). An application can obtain this state with
SysGetOrientationTriggerState and set it with
SysSetOrientationTriggerState.

sysOrientationReversePortrait 3 The display is in reverse portrait
orientation (upside-down from
the normal portrait orientation).

sysOrientationReverseLandscape 4 The display is in reverse
landscape orientation (upside-
down from the normal landscape
orientation).

Table 2.4 Orientation state constants

Constant Value Description

Table 2.5 Orientation trigger state constants

Constant Value Description

sysOrientationTriggerDisabled 0 The orientation trigger is
disabled, meaning that the user is
not allowed to change the
display orientation.

sysOrientationTriggerEnabled 1 The orientation trigger is
enabled, meaning that the user is
allowed to change the display
orientation.

Pen Input Manager Reference
Pen Input Manager Functions

20 Applications and Dynamic Input Areas

Pen Input Manager Functions

PINGetInputAreaState

Purpose Returns the current state of the dynamic input area.

Prototype UInt16 PINGetInputAreaState (void)

Parameters None.

Result One of the constants defined in the section “Input Area States” on
page 16.

See Also PINSetInputAreaState, PINGetInputTriggerState

PINGetInputTriggerState

Purpose Returns the status of the input area icon in the status bar.

Prototype UInt16 PINGetInputTriggerState (void)

Parameters None.

Result One of the constants defined in the section “Input Trigger States” on
page 17.

See Also PINGetInputAreaState

Pen Input Manager Reference
Pen Input Manager Functions

Applications and Dynamic Input Areas 21

PINSetInputAreaState

Purpose Sets the state of the input area.

Prototype Err PINSetInputAreaState (UInt16 state)

Parameters -> state The state to which the input area should be set.
See “Input Area States” on page 16 for a list of
possible values.

Result Returns one of the following error codes:

errNone Success.

pinErrNoSoftInputArea
There is no dynamic input area on this device.

pinErrInvalidParam
You have entered an invalid state parameter.

Comments After opening or closing the input area, this function broadcasts the
notification sysNotifyDisplayResizedEvent (and in Pen Input
Manager version 1.1, posts the event winDisplayChangedEvent
to the event queue). Applications register for this notification or
respond to the event if they wish to resize themselves.

See Also PINGetInputAreaState, PINSetInputTriggerState,
“Setting an Input Area State” on page 6

Pen Input Manager Reference
Other Functions

22 Applications and Dynamic Input Areas

PINSetInputTriggerState

Purpose Sets the state of the input area icon in the status bar.

Prototype Err PINSetInputTriggerState (UInt16 state)

Parameters -> state The state to which the input trigger should be
set. See “Input Trigger States” on page 17 for a
list of possible values.

Result Returns one of the following error codes:

errNone Success.

pinErrNoSoftInputArea
There is no dynamic input area on this device.

pinErrInvalidParam
You have specified an invalid state
parameter.

Comments Applications or Palm OS call this function to enable the input area
icon in the status bar. Normally, this trigger is enabled and should
remain enabled, allowing the user the choice of displaying the input
area or not. Legacy applications might disable the trigger on some
devices.

See Also PINGetInputTriggerState, PINSetInputAreaState,
“Enabling the Input Trigger” on page 6

Other Functions
This section lists other functions that are implemented as part of the
Pen Input Manager in Palm OS 5.

Pen Input Manager Reference
Other Functions

Applications and Dynamic Input Areas 23

FrmGetDIAPolicyAttr

Purpose Returns a form’s dynamic input area policy.

Prototype UInt16 FrmGetDIAPolicyAttr (FormPtr formP)

Parameters -> formP A pointer to a FormType structure.

Result Returns one of the constants listed in “Form Dynamic Input Area
Policies” on page 17.

See Also FrmSetDIAPolicyAttr

FrmSetDIAPolicyAttr

Purpose Sets a form’s dynamic input area policy.

Prototype Err FrmSetDIAPolicyAttr (FormPtr formP,
UInt16 diaPolicy)

Parameters -> formP A pointer to a FormType structure.

-> diaPolicy One of the constants listed in “Form Dynamic
Input Area Policies” on page 17.

Result Returns errNone if no error or pinErrInvalidParam if the
diaPolicy parameter is out of range.

Comments Applications call this function in response to the frmLoadEvent or
frmOpenEvent, to set the policy that the form should use for
opening and closing the dynamic input area. Note that if an
application does not call this function, the default is
frmDIAPolicyStayOpen. This allows legacy application to
always be sized appropriately because the input area is always
open, with the trigger disabled, while the legacy application is
running.

See Also PINSetInputAreaState, FrmGetDIAPolicyAttr, “Setting the
Input Area Policy” on page 5

Pen Input Manager Reference
Other Functions

24 Applications and Dynamic Input Areas

StatGetAttribute

Purpose Returns the control bar state.

Prototype Err StatGetAttribute (UInt16 selector,
UInt32* dataP)

Parameters -> selector Attribute selector, as described in the
Comments section below.

-> dataP Pointer to the returned data, as described in the
Comments section below.

Result Returns one of the following error codes:

errNone Success.

sysErrParamErr
You have specified an invalid selector
parameter.

Comments The following values are supported for the selector parameter:

statAttrBarVisible
Checks if the control bar is visible. The return
data is set to 0 if the control bar is hidden, or is
set to 1 if the control bar is visible or the input
area is open.

statAttrDimension
Gets the control bar bounds. The return data is
two UInt16 values, where the first is the width
of the control bar and the second is the height.
The dimensions use the active coordinate
system.

Compatibility Implemented only in Pen Input Manager version 1.1.

See Also StatHide

Pen Input Manager Reference
Other Functions

Applications and Dynamic Input Areas 25

StatHide

Purpose Hides the control bar.

Prototype Err StatHide (void)

Result Returns one of the following error codes:

errNone Success.

sysErrNotAllowed
The device does not support a dynamic input
area.

sysErrInputWindowOpen
The input area is open (so the control bar is not
currently visible).

Comments The input area must be closed before you call this function.

This function can be called by applications that want to draw to the
entire display area and thus need to hide the control bar. However,
hiding the control bar is discouraged since it prevents users from
exiting to the Launcher or opening the input area via buttons that
appear on the control bar. If the control bar is hidden, you must
provide a mechanism for the user to exit the application.

Compatibility Implemented only in Pen Input Manager version 1.1.

See Also StatGetAttribute, StatShow

StatShow

Purpose Shows the control bar.

Prototype Err StatShow (void)

Result Returns one of the following error codes:

errNone Success.

Pen Input Manager Reference
Other Functions

26 Applications and Dynamic Input Areas

sysErrNotAllowed
The device does not support a dynamic input
area.

Comments If the input area is open when this function is called, it has no effect
and errNone is returned.

Compatibility Implemented only in Pen Input Manager version 1.1.

See Also StatGetAttribute, StatHide

SysGetOrientation

Purpose Returns the display orientation.

Prototype UInt16 SysGetOrientation (void)

Result Returns one of the constants listed in “Orientation States” on
page 18.

Comments Not all devices support changing the display orientation. For
devices that don’t support changing the display orientation, this
function always returns sysOrientationPortrait.

Compatibility Implemented only in Pen Input Manager version 1.1 in Palm OS
version 5.3. Some licensees may have implemented this function in
Pen Input Manager version 1.1 in an earlier OS version. To check if
this function is implemented in an earlier OS version, use this test:

if (SysGlueTrapExists(pinSysGetOrientation)) {
// SysGetOrientation exists
}

See Also SysSetOrientation

Pen Input Manager Reference
Other Functions

Applications and Dynamic Input Areas 27

SysSetOrientation

Purpose Sets the display orientation.

Prototype Err SysSetOrientation (UInt16 orientation)

Parameters -> orientation The orientation to which the display should be
set. See “Orientation States” on page 18 for a
list of possible values.

Result Returns one of the following error codes:

errNone Success.

sysErrNotAllowed
Setting the display orientation is not supported
on the device.

Comments Not all devices support changing the display orientation.

Compatibility Implemented only in Pen Input Manager version 1.1 in Palm OS
version 5.3. Some licensees may have implemented this function in
Pen Input Manager version 1.1 in an earlier OS version. To check if
this function is implemented in an earlier OS version, use this test:

if (SysGlueTrapExists(pinSysSetOrientation)) {
// SysSetOrientation exists
}

See Also SysGetOrientation

SysGetOrientationTriggerState

Purpose Returns the display orientation trigger state.

Prototype UInt16 SysGetOrientationTriggerState (void)

Result Returns one of the constants listed in “Orientation Trigger States”
on page 19.

Pen Input Manager Reference
Other Functions

28 Applications and Dynamic Input Areas

Comments Not all devices support changing the display orientation. For
devices that don’t support changing the display orientation, this
function always returns sysOrientationTriggerDisabled.

Compatibility Implemented only in Pen Input Manager version 1.1 in Palm OS
version 5.3. Some licensees may have implemented this function in
Pen Input Manager version 1.1 in an earlier OS version. To check if
this function is implemented in an earlier OS version, use this test:

if
(SysGlueTrapExists(pinSysGetOrientationTriggerS
tate)) {
// SysGetOrientationTriggerState exists
}

See Also SysSetOrientationTriggerState

SysSetOrientationTriggerState

Purpose Sets the display orientation trigger state.

Prototype Err SysSetOrientationTriggerState
(UInt16 triggerState)

Parameters -> triggerState One of the constants listed in “Orientation
Trigger States” on page 19.

Result Returns one of the following error codes:

errNone Success.

sysErrNotAllowed
Setting the display orientation is not supported
on the device.

Comments Not all devices support changing the display orientation.

Compatibility Implemented only in Pen Input Manager version 1.1 in Palm OS
version 5.3. Some licensees may have implemented this function in

Pen Input Manager Reference
Other Functions

Applications and Dynamic Input Areas 29

Pen Input Manager version 1.1 in an earlier OS version. To check if
this function is implemented in an earlier OS version, use this test:

if
(SysGlueTrapExists(pinSysSetOrientationTriggerS
tate)) {
// SysSetOrientationTriggerState exists
}

See Also SysGetOrientationTriggerState

WinSetConstraintsSize

Purpose Sets the maximum, preferred, and minimum size constraints for a
window.

Prototype Err WinSetConstraintsSize (WinHandle winHandle,
Coord minH, Coord prefH, Coord maxH, Coord minW,
Coord prefW, Coord maxW)

Parameters -> winHandle A handle to a window.

-> minH The minimum height to which this window can
be sized in standard coordinates. This value
must be less than or equal to 160 pixels.

-> prefH The preferred height for this window in
standard coordinates.

-> maxH The maximum height for this window in
standard coordinates.

-> minW The minimum width for the window in
standard coordinates.

-> prefW The preferred width for the window in
standard coordinates.

-> maxW The maximum width for the window in
standard coordinates.

Result Returns one of the following error codes:

errNone Success.

Pen Input Manager Reference
Other Functions

30 Applications and Dynamic Input Areas

pinErrNoSoftInputArea
There is no dynamic input area on this device.

pinErrInvalidParam
You have specified an invalid parameter.

Comments Applications must call this function in response to a
frmLoadEvent or frmOpenEvent to set the size constraints for
the window. If the application does not call this function, it is
assumed that both the minimum and maximum values for the
window are 160 pixels by 160 pixels.

See Also “Size Constraints” on page 3

Applications and Dynamic Input Areas 31

Index

A
AppHandleEvent 4

D
dynamic input area v

F
frmDIAPolicyCustom 5, 6, 18
frmDIAPolicyStayOpen 18, 23
FrmGetDIAPolicyAttr 18, 23
frmLoadEvent 4, 5, 6, 12, 23, 30
frmOpenEvent 3, 4, 5, 6, 12, 23, 30
FrmSetDIAPolicyAttr 5, 18, 23

I
input area state 16, 20, 21, 22

P
Pen Input Manager 15
PenInputMgr.h 15
pinErrInvalidParam 22, 23, 30
pinErrNoSoftInputArea 22, 30
pinFtrAPIVersion 2
PINGetInputAreaState 16, 20
PINGetInputTriggerState 17, 20
pinInputAreaClosed 16
pinInputAreaNone 17
pinInputAreaOpen 16
pinInputAreaUser 17
pinInputTriggerDisabled 17
pinInputTriggerEnabled 17
pinInputTriggerNone 17
PINSetInputAreaState 7, 15, 16, 17, 21
PINSetInputTriggerState 5, 6, 17, 22

S
StatGetAttribute 24
StatHide 25
StatShow 25
SysGetOrientation 18, 26
SysGetOrientationTriggerState 19, 27
sysNotifyDisplayResizedEvent 7, 15, 21

sysOrientationLandscape 18
sysOrientationPortrait 18
sysOrientationReverseLandscape 19
sysOrientationReversePortrait 19
sysOrientationTriggerDisabled 19
sysOrientationTriggerEnabled 19
sysOrientationUser 18
SysSetOrientation 18, 27
SysSetOrientationTriggerState 19, 28

W
winDisplayChangedEvent 7, 8, 16, 21
winEnterEvent 6, 12
WinSetConstraintsSize 3, 4, 29

32 Applications and Dynamic Input Areas

	Applications and Dynamic Input Areas
	Table of Contents
	About This Document
	What This Book Contains
	Additional Resources

	Applications and the Dynamic Input Area
	The Dynamic Input Area Feature
	Size Constraints
	Input Area Policy
	Setting the Input Area Policy
	Enabling the Input Trigger
	Setting an Input Area State

	Resizing a Form
	Hiding and Showing the Control Bar
	Pen Input Manager Compatibility
	New sysFtrNumInputAreaFlags Support
	Additional winDisplayChangedEvent
	Restoration of Input Trigger State
	New pinInputAreaUser Input Area State
	New Stat... Functions
	New Support for Changing Display Orientation

	Pen Input Manager Reference
	Pen Input Manager Constants
	sysNotifyDisplayResizedEvent
	winDisplayChangedEvent
	Input Area States
	Input Trigger States
	Form Dynamic Input Area Policies
	Orientation States
	Orientation Trigger States

	Pen Input Manager Functions
	PINGetInputAreaState
	PINGetInputTriggerState
	PINSetInputAreaState
	PINSetInputTriggerState

	Other Functions
	FrmGetDIAPolicyAttr
	FrmSetDIAPolicyAttr
	StatGetAttribute
	StatHide
	StatShow
	SysGetOrientation
	SysSetOrientation
	SysGetOrientationTriggerState
	SysSetOrientationTriggerState
	WinSetConstraintsSize

	Index

