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Palm OS 5 ARM 
Programming 
This document is not intended for all Palm OS® application 
developers. 

Most Palm OS 5 applications do not need native ARM code and will 
not benefit from using native ARM code. Palm OS 5 itself runs as 
ARM code, so all API functions run at the full speed of the ARM 
processor. If you have an application that performs adequately on 
Palm OS 5, then you do not need to write ARM native code. 

However, some application algorithms may benefit from being 
rewritten in native ARM instructions. This document is intended for 
developers who have applications that require a performance 
improvement in order to perform adequately on Palm OS 5. 

Understanding Palm OS 5 and ARM 
Palm OS 5 is a complete port of the Palm operating system from a 
68K processor to an ARM processor. 

68K:  

The term 68K processor refers to the family of Motorola 
68000 processors. 

ARM:  

The term ARM processor refers to the family of Advanced 
RISC Machine processors. An ARM processor is a type of 
4-byte RISC processor, and is available from many sources. 

Starting in Palm OS 5, the entire operating system runs natively on 
the ARM processor. When an application calls a Palm OS API 
function, the API function runs at the full speed of the ARM 
processor. 
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Palm Application Compatibility Environment
Palm OS 5 also provides the Palm Application Compatibility 
Environment (PACE) on ARM. PACE allows existing 68K 
applications to run on the ARM processor in an emulation mode. 

Because Palm OS functions are native and not emulated, PACE 
provides excellent performance for most 68K applications. As a 
result, most 68K applications will not benefit significantly from 
being rewritten for ARM. 

Figure 1 shows how PACE provides a compatibility layer between 
68K applications and Palm OS 5 running natively on ARM. 

Figure 1 Palm Application Compatibility Environment

Because an application’s 68K code is emulated in PACE, certain 
algorithms—such as those performing data encryption or 
compression—may benefit from being rewritten in native ARM 
instructions. 
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Using ARM Subroutines 
If you have a processor-intensive 68K algorithm, writing an ARM 
subroutine may improve the performance of your 68K application 
on Palm OS 5. 

An ARM subroutine is not a self-contained application; it is a 
native ARM function that the 68K application can call as a 
subroutine. The ARM subroutine allows the application to use the 
full processing power of the ARM hardware. 

Figure 2 shows how your 68K application calls your ARM 
subroutine.

Figure 2 Using PceNativeCall to Call an ARM Subroutine
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Calling ARM Subroutines 
To call an ARM subroutine from your 68K application, you use the 
new function PceNativeCall. PceNativeCall is fully 
documented in Palm OS Programmer’s API Reference. 

The PceNativeCall function takes two arguments:

1. A pointer to the ARM subroutine, generally but not 
necessarily stored in a code resource. 
If the ARM subroutine is stored in a resource, the 68K 
application can simply lock the resource with the appropriate 
type and ID to get a pointer to the ARM subroutine. 

2. A pointer to a data block, allowing the 68K application to 
exchange data with the ARM subroutine. 

Before calling the ARM subroutine, the 68K application must check 
that it is running on PACE and must also check the processor type. 

In general, a 68K application should provide a 68K subroutine 
implementing code equivalent to the ARM subroutine in case the 
application is running on non-ARM hardware (that is, on a 
handheld running an earlier version of Palm OS). By including both 
a 68K version and an ARM version of the subroutine, you continue 
to support the existing Palm Powered™ handhelds as well as 
Palm OS 5 handhelds. For more information about application 
compatibility, see Palm OS Programmer’s Companion. 

Writing ARM Subroutines 
The ARM subroutine needs to include the proper prototype and the 
ARM code you want it to contain. A sample ARM subroutine, called 
armlet-simple.c, is included in the Palm OS 5 SDK to show the 
minimum amount of code required. 

The ARM subroutine can also call Palm OS API functions, and can 
call back into 68K code. The file armlet-oscall.c, also included 
in the Palm OS 5 SDK, provides an example of calling a Palm OS 
API function. 
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The following sections explain the steps for writing an ARM 
subroutine: 

1. “Isolate the Performance-Critical Area in Your 68K 
Application” on page 5

2. “Convert the ARM Subroutine to Take One Argument” on 
page 6

3. “Handle 68K and ARM Technical Differences” on page 6
4. “Test the ARM Subroutine” on page 8
5. “Build the ARM Subroutine” on page 9 

Isolate the Performance-Critical Area in Your 
68K Application 
To decide which algorithms will benefit from being written as an 
ARM subroutine, you should start by doing a performance analysis 
of your 68K application. If your 68K application runs “fast enough” 
when you do your performance testing, then there is no reason to 
write an ARM subroutine. 

• Test your 68K application using Palm OS Simulator. Palm OS 
Simulator is the easiest and best way to test your application 
for Palm OS 5 compatibility. Running your application on 
Palm OS Simulator will show you whether any algorithms 
behave differently on Palm OS 5. 

Any algorithms that do extensive calculations, such as data 
encryption or compression, may run slower on Palm OS 
Simulator. If you notice a performance difference, then you 
have found a candidate algorithm that might benefit from 
being rewritten as an ARM subroutine. 

• Test your 68K application using the profiling version of Palm 
OS Emulator. The profiling version of Palm OS Emulator 
monitors your application’s execution, generating statistics 
that show which algorithms take the most time. 

Emulator can help you pinpoint slow algorithms, but 
performance on Emulator will not indicate performance on 
Palm OS 5. Emulator does not include the Palm OS 5 PACE 
component, but Simulator does. 
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Convert the ARM Subroutine to Take One 
Argument 
The function PceNativeCall, which you use to call an ARM 
subroutine from your 68K application, takes only two arguments: a 
pointer to the ARM subroutine and a pointer to a data block. As a 
result, it will be easier to write your subroutine if it takes a single 
input argument. For more information about using the 
PceNativeCall function, see Palm OS Programmer’s Companion. 

Handle 68K and ARM Technical Differences 
When implementing the ARM subroutine, you should be aware of 
how the 68K processor and the ARM processor are different. The 
following sections describe some technical considerations that you 
need to handle in your ARM subroutine: 

• “Big Endian and Little Endian” 

• “Integer Alignment” 

• “Structure Packing” 

Big Endian and Little Endian 

The 68K processor uses big-endian integers; the ARM processor 
uses little endian. Big and little refer to the order in which the bytes 
are stored in a multi-byte integer. In big-endian integers, the most 
significant byte is the first; in little-endian integers, the most 
significant byte is the last byte.

This means 2- and 4-byte integers are stored in reverse byte order, 
and thus must be byte-swapped when exchanged between the ARM 
and 68K processors. Endianness is only relevant in the context of 2- 
and 4-byte integers (including pointers). Other types of data, such 
as strings, don't need to be byte-swapped.

PACE automatically byte-swaps the PceNativeCall function's 
userData68KP argument, so it can be de-referenced immediately 
from with the ARM function with no modification. PACE also 
automatically byte-swaps the 4-byte return value that is passed back 
to the calling function.

PACE doesn't byte-swap any of the data pointed to by the 
userData68KP argument because PACE doesn't know anything 
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about what kind of data is being passed. (Remember, only 2- and 
4-byte integers need to be byte-swapped, and the userData68KP 
argument is simply a pointer to arbitrary data.) 

Byte-Swapping Macros for Use in ARM Subroutines 

Endianutils.h contains convenience macros to byte-swap 2- and 
4-byte integers in your ARM subroutine: 

ByteSwap16(integer) 
Byte-swaps a 2-byte (16-bit) integer value. 

ByteSwap32(integer)
Byte-swaps a 4-byte (32-bit) integer value. 

ARM subroutines are responsible for byte-swapping integers in the 
data block as necessary.

Integer Alignment 

ARM processors require that 4-byte integers be aligned on a 4-byte 
boundary. 68K processors require only even address (2-byte) 
alignment. 

To handle integer alignment differences, you have the two following 
options: 

1. Allocate data using MemPtrNew, carefully declaring data 
structures with appropriate integer alignment. 
MemPtrNew always returns a 4-byte aligned address, so you 
can be sure that the data starts on a 4-byte boundary. 
However, you must also be careful that the data itself is 
properly aligned. When aligning data objects, recognize that 
68K and ARM processors align 4-byte objects differently, as 
shown in Table 1. 
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If a 4-byte data object is not properly aligned, the ARM 
processor may attempt to access the object using an address 
that is a multiple of 4, resulting in a loss of data. 

2. Copy 4-byte integers into local variables before using them. 
Endianutils.h contains convenience macros that you can 
use to read and write 4-byte values to and from local 
variables while simultaneously byte-swapping them: 

– Read68KUnaligned32(address) 

Reads a value from a specified address. 

– Write68KUnaligned32(address, value)

Writes a specified value to a specified address. 

Structure Packing 

Different compilers handle the automatic padding of structures 
differently. Some compilers automatically add padding bytes to 
align structures on a given byte boundary depending on the 
compiler options specified. Use care when declaring structures, or 
make a local copy of any structure that you use. 

Test the ARM Subroutine 
The ARM subroutine will run on Palm OS 5 on ARM hardware. 
However, Palm OS Simulator does not run ARM code. Instead, 
Simulator provides an implementation of Palm OS 5 running on 
Microsoft Windows. As a result, to test your ARM subroutine on 

Table 1 Default Data Object Alignment 

Data 
Object Size 

68K Processor 
Alignment 

ARM Processor 
Alignment 

1 byte Any address Any address 

2 bytes 2-byte alignment 
(even address) 

2-byte alignment (even 
address) 

4 bytes 2-byte alignment 
(even address) 

4-byte alignment (address is a 
multiple of 4) 
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Simulator, you need to build the subroutine as a Windows DLL. 
Simulator's implementation of PACE is built to recognize a 
subroutine call as a call into a DLL.

The Palm OS 5 SDK includes a sample Microsoft Visual C++ project 
that builds a DLL with one entry point which has the same function 
as the sample ARM subroutine also included in the Palm OS 5 SDK.

When calling a DLL, the first argument passed to PceNativeCall 
is a pointer to the name of a DLL and the name of the entry point 
within that DLL that is to be executed, separated by a null character 
and terminated with a null character (for example, a pointer to the 
character string "test.dll\0EntryPoint"). 

By default, Simulator will look for the DLL in the directory where 
PalmSim.exe is running. If you want to place the DLL in a 
different location, you should specify the full path of the ARM 
subroutine DLL name (for example, 
"c:\\projects\\armletdll\\test.dll\0EntryPoint"). 

Your 68K application should check the processor type:

• If the processor is ARM, the 68K application should call the 
ARM subroutine.

• If the processor is Windows, the 68K application should call 
the Windows DLL. 

Otherwise, the 68K application should call the 68K version of the 
subroutine, which assumes the application is running on an earlier 
version of Palm OS. 

Build the ARM Subroutine 
You will need to use an ARM compiler to build the ARM 
subroutine. Palm, Inc. does not provide or support an ARM 
compiler or development environment, but several are available, 
such as ARM Developer Suite (ADS) and gcc. 

The compiled object file for the ARM subroutine must be linked 
with the 68K application as a raw binary file. For calculating 
address offsets, it is generally easiest to put the entry point first in 
the raw binary file. 
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Adding ARM Subroutines to a Metrowerks Project 

For developers who are accustomed to using Metrowerks, an easy 
way to include an ARM subroutine is to load the binary ARM 
instructions into a resource. You can do this with CodeWarrior by 
using a resource file (a file with the file type .r), or by using PilRC. 
The Palm OS 5 SDK includes a sample project for a sample 
ARMCode.r file. 

Overview of Included Files 
The following ARM programming samples are included as part of 
the Palm OS 5 SDK. 

ARM Subroutine Sample Files 
Table 2 shows the sample files that call ARM code from a 68K 
application. 

Table 2 Calling ARM from 68K Sample Files 

Filename Purpose 

armlet-simple.c 
armlet-simple.bin 

A trivial ARM subroutine showing how 
to pass a pointer from a 68K application. 

armlet-oscall.c 
armlet-oscall.bin 

An ARM subroutine showing you how to 
call a Palm OS API function, using 
MemPtrNew as an example. 

armlet-
endianness_and_alignment.c 
armlet-
endianness_and_alignment.bin 

An ARM subroutine showing you how to 
make sure your data is correctly 4-byte 
aligned. 

endianutils.h Macros for doing endian byte-swapping 
and 4-byte alignment correction. Used by 
the armlet-oscall.c and armlet-
endianness_and_alignment.c files. 

example_data_type.h Example showing a user-defined 
structure. Used by the armlet-
endianness_and_alignment.c file. 
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Windows DLL Sample Files 
Table 3 on page 11 table shows the sample files that you can use to 
build a DLL for testing an ARM subroutine with Palm OS Simulator. 
For background information, see “Test the ARM Subroutine” on 
page 8.

CodeWarrior Project Sample Files 
Table 4 table shows the sample files that you can use with 
Metrowerks CodeWarrior. For background information, see 
“Adding ARM Subroutines to a Metrowerks Project” on page 10. 

Table 3 Windows DLL Sample Files - For Testing with Palm 
OS Simulator 

Filename Purpose 

Simple.dsp Visual Studio project file for building a 
DLL file. 

SimNative.cpp The main DLL source file. 

SimNative.h Header file which defines the exports 
from the DLL file. 

StdAfx.cpp C++ source file used to build a 
precompiler header file and precompiled 
types file. 

StdAfx.h Header file used by StdAfx.cpp. 
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Table 4 Metrowerks CodeWarrior Project Sample Files 

Filename Purpose 

sample_project.mcp CodeWarrior project file. 

Starter.c Source file for the 68K application that 
calls the ARM subroutine. 

Starter.rsrc Resource file, used for including the ARM 
subroutine as a code resource. 

StarterRsc.h Header file used by the resource file. 

ARMCode.r Resource file containing the ARM 
subroutine as a code resource. 
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