7\
palmsource
) g

Palm OS 5 ARM
Programming

Palm OS® 5 SDK (68K) R3

CONTRIBUTORS

Written by Brian Maas
Engineering contributions by Owen Emry, Bob Ebert, David Berbessou, David Fedor, and Greg Wilson

Copyright © 1996 - 2003, PalmSource, Inc. and its affiliates. All rights reserved. This documentation may
be printed and copied solely for use in developing products for Palm OS® software. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the foregoing, no
part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation or adaptation) without express written
consent from PalmSource, Inc.

PalmSource, Inc. reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of PalmSource, Inc. to provide notification of such revision or
changes.

PALMSOURCE, INC. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR WARRANTIES THAT
THE DOCUMENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR
YOUR USE. THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALMSOURCE, INC. AND
ITS SUPPLIERS MAKE NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER
IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES,
TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
SATISFACTORY QUALITY. TO THE FULL EXTENT ALLOWED BY LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF
OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN IF PALMSOURCE, INC. OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

PalmSource, the PalmSource logo, AnyDay, EventClub, Graffiti, HandFAX, HandMAIL, HandSTAMP,
HandWEB, HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm
trade dress, Palm Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove,
PalmModem, PalmPak, PalmPix, PalmPoint, PalmPower, PalmPrint, Palm.Net, Simply Palm, ThinAir, and
WeSync are trademarks of PalmSource, Inc. or its affiliates. All other product and brand names may be
trademarks or registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT
ACCOMPANYING THE COMPACT DISC.

Palm OS 5 ARM Programming PalmSource, Inc.
Document Number 9001-003 1240 Crossman Avenue
July 30, 2003 Sunnyvale, CA 94089
For the latest version of this document, visit USA

http://www.palmos.com/dev/support/docs/. www.palmsource.com

http://www.palmsource.com
http://www.palmos.com/dev/support/docs/

Table of Contents

Palm OS 5 ARM Programming
Understanding Palm OS 5 and ARM .
Palm Application Compatibility Environment .
Using ARM Subroutines
Calling ARM Subroutines . .
Writing ARM Subroutines
Isolate the Performance-Critical Area in Your 68K Application .
Convert the ARM Subroutine to Take One Argument .
Handle 68K and ARM Technical Differences .
Test the ARM Subroutine .
Build the ARM Subroutine
Overview of Included Files
ARM Subroutine Sample Files .
Windows DLL Sample Files .
CodeWarrior Project Sample Files

oo ool ~ABMNWNPRPRP

e =
= = O O

[ERN
w

Index

Palm OS 5 ARM Programming iii

iv. Palm OS 5 ARM Programming

Palm OS 5 ARM
Programming

This document is not intended for all Palm OS® application
developers.

Most Palm OS 5 applications do not need native ARM code and will
not benefit from using native ARM code. Palm OS 5 itself runs as
ARM code, so all API functions run at the full speed of the ARM
processor. If you have an application that performs adequately on
Palm OS 5, then you do not need to write ARM native code.

However, some application algorithms may benefit from being
rewritten in native ARM instructions. This document is intended for
developers who have applications that require a performance
improvement in order to perform adequately on Palm OS 5.

Understanding Palm OS 5 and ARM

Palm OS 5 is a complete port of the Palm operating system from a
68K processor to an ARM processor.

68K:

The term 68K processor refers to the family of Motorola
68000 processors.

ARM:

The term ARM processor refers to the family of Advanced
RISC Machine processors. An ARM processor is a type of
4-byte RISC processor, and is available from many sources.

Starting in Palm OS 5, the entire operating system runs natively on
the ARM processor. When an application calls a Palm OS API
function, the API function runs at the full speed of the ARM
processor.

Palm OS 5 ARM Programming 1

Palm OS 5 ARM Programming
Understanding Palm OS 5 and ARM

Palm Application Compatibility Environment

Palm OS 5 also provides the Palm Application Compatibility
Environment (PACE) on ARM. PACE allows existing 68K
applications to run on the ARM processor in an emulation mode.

Because Palm OS functions are native and not emulated, PACE
provides excellent performance for most 68K applications. As a
result, most 68K applications will not benefit significantly from
being rewritten for ARM.

Figure 1 shows how PACE provides a compatibility layer between
68K applications and Palm OS 5 running natively on ARM.

Figure1l Palm Application Compatibility Environment

Because an application’s 68K code is emulated in PACE, certain
algorithms—such as those performing data encryption or

compression—may benefit from being rewritten in native ARM
instructions.

2 Palm OS 5 ARM Programming

Palm OS 5 ARM Programming
Using ARM Subroutines

Using ARM Subroutines

If you have a processor-intensive 68K algorithm, writing an ARM
subroutine may improve the performance of your 68K application
on Palm OS 5.

An ARM subroutine is not a self-contained application; it is a
native ARM function that the 68K application can call as a
subroutine. The ARM subroutine allows the application to use the
full processing power of the ARM hardware.

Figure 2 shows how your 68K application calls your ARM
subroutine.

Figure 2 Using PceNativeCall to Call an ARM Subroutine

PceNatjveCall

ARM Processor

Palm OS 5 ARM Programming 3

Palm OS 5 ARM Programming
Calling ARM Subroutines

Calling ARM Subroutines

To call an ARM subroutine from your 68K application, you use the
new function PceNat i veCal | . PceNat i veCal | is fully
documented in Palm OS Programmer’s API Reference.

The PceNat i veCal | function takes two arguments:

1. A pointer to the ARM subroutine, generally but not
necessarily stored in a code resource.

If the ARM subroutine is stored in a resource, the 68K
application can simply lock the resource with the appropriate
type and ID to get a pointer to the ARM subroutine.

2. A pointer to a data block, allowing the 68K application to
exchange data with the ARM subroutine.

Before calling the ARM subroutine, the 68K application must check
that it is running on PACE and must also check the processor type.

In general, a 68K application should provide a 68K subroutine
implementing code equivalent to the ARM subroutine in case the
application is running on non-ARM hardware (that is, on a
handheld running an earlier version of Palm OS). By including both
a 68K version and an ARM version of the subroutine, you continue
to support the existing Palm Powered™ handhelds as well as

Palm OS 5 handhelds. For more information about application
compatibility, see Palm OS Programmer’s Companion.

Writing ARM Subroutines

The ARM subroutine needs to include the proper prototype and the
ARM code you want it to contain. A sample ARM subroutine, called
arm et - si npl e. c, is included in the Palm OS 5 SDK to show the
minimum amount of code required.

The ARM subroutine can also call Palm OS API functions, and can
call back into 68K code. The filear ml et - oscal | . ¢, also included
in the Palm OS 5 SDK, provides an example of calling a Palm OS
API function.

4 Palm OS 5 ARM Programming

Palm OS 5 ARM Programming
Writing ARM Subroutines

The following sections explain the steps for writing an ARM

subroutine:

1. “Isolate the Performance-Critical Area in Your 68K
Application” on page 5

2. “Convert the ARM Subroutine to Take One Argument” on
page 6

3. “Handle 68K and ARM Technical Differences” on page 6

4. “Test the ARM Subroutine” on page 8

5.

“Build the ARM Subroutine” on page 9

Isolate the Performance-Critical Area in Your
68K Application

To decide which algorithms will benefit from being written as an
ARM subroutine, you should start by doing a performance analysis
of your 68K application. If your 68K application runs “fast enough”
when you do your performance testing, then there is no reason to
write an ARM subroutine.

= Test your 68K application using Palm OS Simulator. Palm OS

Simulator is the easiest and best way to test your application
for Palm OS 5 compatibility. Running your application on
Palm OS Simulator will show you whether any algorithms
behave differently on Palm OS 5.

Any algorithms that do extensive calculations, such as data
encryption or compression, may run slower on Palm OS
Simulator. If you notice a performance difference, then you
have found a candidate algorithm that might benefit from
being rewritten as an ARM subroutine.

Test your 68K application using the profiling version of Palm
OS Emulator. The profiling version of Palm OS Emulator
monitors your application’s execution, generating statistics
that show which algorithms take the most time.

Emulator can help you pinpoint slow algorithms, but
performance on Emulator will not indicate performance on
Palm OS 5. Emulator does not include the Palm OS 5 PACE
component, but Simulator does.

Palm OS 5 ARM Programming 5

Palm OS 5 ARM Programming
Writing ARM Subroutines

Convert the ARM Subroutine to Take One
Argument

The function PceNat i veCal | , which you use to call an ARM
subroutine from your 68K application, takes only two arguments: a
pointer to the ARM subroutine and a pointer to a data block. As a
result, it will be easier to write your subroutine if it takes a single
input argument. For more information about using the

PceNat i veCal | function, see Palm OS Programmer’s Companion.

Handle 68K and ARM Technical Differences

When implementing the ARM subroutine, you should be aware of
how the 68K processor and the ARM processor are different. The
following sections describe some technical considerations that you
need to handle in your ARM subroutine:

e “Big Endian and Little Endian”

= “Integer Alignment”
= “Structure Packing”

Big Endian and Little Endian

The 68K processor uses big-endian integers; the ARM processor
uses little endian. Big and little refer to the order in which the bytes
are stored in a multi-byte integer. In big-endian integers, the most
significant byte is the first; in little-endian integers, the most
significant byte is the last byte.

This means 2- and 4-byte integers are stored in reverse byte order,
and thus must be byte-swapped when exchanged between the ARM
and 68K processors. Endianness is only relevant in the context of 2-
and 4-byte integers (including pointers). Other types of data, such
as strings, don't need to be byte-swapped.

PACE automatically byte-swaps the PceNat i veCal | function's
user Dat a68KP argument, so it can be de-referenced immediately
from with the ARM function with no modification. PACE also
automatically byte-swaps the 4-byte return value that is passed back
to the calling function.

PACE doesn't byte-swap any of the data pointed to by the
user Dat a68KP argument because PACE doesn't know anything

6 Palm OS5 ARM Programming

Palm OS 5 ARM Programming
Writing ARM Subroutines

about what kind of data is being passed. (Remember, only 2- and
4-byte integers need to be byte-swapped, and the user Dat a68KP
argument is simply a pointer to arbitrary data.)

Byte-Swapping Macros for Use in ARM Subroutines

Endi anut i | s. h contains convenience macros to byte-swap 2- and
4-byte integers in your ARM subroutine:

Byt eSwapl6(i nt eger)
Byte-swaps a 2-byte (16-bit) integer value.

Byt eSwap32(i nt eger)
Byte-swaps a 4-byte (32-bit) integer value.

ARM subroutines are responsible for byte-swapping integers in the
data block as necessary.

Integer Alignment

ARM processors require that 4-byte integers be aligned on a 4-byte
boundary. 68K processors require only even address (2-byte)
alignment.

To handle integer alignment differences, you have the two following
options:

1. Allocate data using MenPt r New, carefully declaring data
structures with appropriate integer alignment.

MenPt r Newalways returns a 4-byte aligned address, so you
can be sure that the data starts on a 4-byte boundary.
However, you must also be careful that the data itself is
properly aligned. When aligning data objects, recognize that
68K and ARM processors align 4-byte objects differently, as
shown in Table 1.

Palm OS 5 ARM Programming 7

Palm OS 5 ARM Programming
Writing ARM Subroutines

Table 1 Default Data Object Alignment

Data 68K Processor ARM Processor

Object Size Alignment Alignment

1 byte Any address Any address

2 bytes 2-byte alignment 2-byte alignment (even
(even address) address)

4 bytes 2-byte alignment 4-byte alignment (address is a
(even address) multiple of 4)

If a 4-byte data object is not properly aligned, the ARM
processor may attempt to access the object using an address
that is a multiple of 4, resulting in a loss of data.

2. Copy 4-byte integers into local variables before using them.

Endi anuti | s. h contains convenience macros that you can
use to read and write 4-byte values to and from local
variables while simultaneously byte-swapping them:

— Read68KUnal i gned32(addr ess)
Reads a value from a specified addr ess.

— Wi te68KUnal i gned32(address, val ue)
Writes a specified val ue to a specified addr ess.

Structure Packing

Different compilers handle the automatic padding of structures
differently. Some compilers automatically add padding bytes to
align structures on a given byte boundary depending on the
compiler options specified. Use care when declaring structures, or
make a local copy of any structure that you use.

Test the ARM Subroutine

The ARM subroutine will run on Palm OS 5 on ARM hardware.
However, Palm OS Simulator does not run ARM code. Instead,
Simulator provides an implementation of Palm OS 5 running on
Microsoft Windows. As a result, to test your ARM subroutine on

8 Palm OS 5 ARM Programming

Palm OS 5 ARM Programming
Writing ARM Subroutines

Simulator, you need to build the subroutine as a Windows DLL.
Simulator's implementation of PACE is built to recognize a
subroutine call as a call into a DLL.

The Palm OS 5 SDK includes a sample Microsoft Visual C++ project
that builds a DLL with one entry point which has the same function
as the sample ARM subroutine also included in the Palm OS 5 SDK.

When calling a DLL, the first argument passed to PceNat i veCal |
is a pointer to the name of a DLL and the name of the entry point
within that DLL that is to be executed, separated by a null character
and terminated with a null character (for example, a pointer to the
character string "t est . dl | \ OEnt r yPoi nt).

By default, Simulator will look for the DLL in the directory where
Pal nSi m exe is running. If you want to place the DLL in a
different location, you should specify the full path of the ARM
subroutine DLL name (for example,

"c:\\projects\\arm etdl [\\test.dl I\OEntryPoint").

Your 68K application should check the processor type:

= If the processor is ARM, the 68K application should call the
ARM subroutine.

= |If the processor is Windows, the 68K application should call
the Windows DLL.

Otherwise, the 68K application should call the 68K version of the
subroutine, which assumes the application is running on an earlier
version of Palm OS.

Build the ARM Subroutine

You will need to use an ARM compiler to build the ARM
subroutine. Palm, Inc. does not provide or support an ARM
compiler or development environment, but several are available,
such as ARM Developer Suite (ADS) and gcc.

The compiled object file for the ARM subroutine must be linked
with the 68K application as a raw binary file. For calculating
address offsets, it is generally easiest to put the entry point first in
the raw binary file.

Palm OS 5 ARM Programming 9

Palm OS 5 ARM Programming
Overview of Included Files

Adding ARM Subroutines to a Metrowerks Project

For developers who are accustomed to using Metrowerks, an easy
way to include an ARM subroutine is to load the binary ARM
instructions into a resource. You can do this with CodeWarrior by
using a resource file (a file with the file type . r), or by using PilRC.

The Palm OS 5 SDK includes a sample project for a sample

ARMCode. r file.

Overview of Included Files

The following ARM programming samples are included as part of

the Palm OS 5 SDK.

ARM Subroutine Sample Files
Table 2 shows the sample files that call ARM code from a 68K

application.

Table 2 Calling ARM from 68K Sample Files

Filename

Purpose

armet-sinple.c
arm et-sinple.bin

arm et-oscall.c
arm et-oscall.bin

arm et -

endi anness_and_al i gnnment . c
arm et -

endi anness_and_al i gnnent . bi n

endi anutils. h

exanpl e_data_type. h

A trivial ARM subroutine showing how
to pass a pointer from a 68K application.

An ARM subroutine showing you how to
call a Palm OS API function, using
MenPt r Newas an example.

An ARM subroutine showing you how to
make sure your data is correctly 4-byte
aligned.

Macros for doing endian byte-swapping
and 4-byte alignment correction. Used by
thearm et-oscall.candarni et -
endi anness_and_al i gnnent . c files.

Example showing a user-defined
structure. Used by the ar nl et -
endi anness_and_al i gnnent . c file.

10 Palm OS 5 ARM Programming

Palm OS 5 ARM Programming
Overview of Included Files

Windows DLL Sample Files

Table 3 on page 11 table shows the sample files that you can use to
build a DLL for testing an ARM subroutine with Palm OS Simulator.
For background information, see “Test the ARM Subroutine” on
page 8.

Table 3 Windows DLL Sample Files - For Testing with Palm
OS Simulator

Filename

Purpose

Si npl e. dsp

Si mNat i ve. cpp
Si mNat i ve. h

St dAf x. cpp

St dAf x. h

Visual Studio project file for building a
DLL file.

The main DLL source file.

Header file which defines the exports
from the DLL file.

C++ source file used to build a
precompiler header file and precompiled
types file.

Header file used by St dAf x. cpp.

CodeWarrior Project Sample Files

Table 4 table shows the sample files that you can use with
Metrowerks CodeWarrior. For background information, see
“Adding ARM Subroutines to a Metrowerks Project” on page 10.

Palm OS 5 ARM Programming 11

Palm OS 5 ARM Programming
Overview of Included Files

Table 4 Metrowerks CodeWarrior Project Sample Files

Filename Purpose

sanpl e_project. ntp CodeWarrior project file.

Starter.c Source file for the 68K application that
calls the ARM subroutine.

Starter.rsrc Resource file, used for including the ARM
subroutine as a code resource.

StarterRsc. h Header file used by the resource file.

ARMCode. r Resource file containing the ARM

subroutine as a code resource.

12 Palm OS 5 ARM Programming

Index

Symbols
.rfile 10

Numerics

68000 processor 1
68K processor, definition 1

A

ADS 9

Advanced RISC Machine 1
API function PceNativeCall 4
ARM compilers 9

ARM Developer Suite 9

ARM gcc compiler 9

ARM processor, definition 1
ARM programming samples 10
ARM subroutine, definition 3
ARMCode.r 10, 12

armlet-endianess_and_alignment.c 10

armlet-oscall.c 4, 10
armlet-simple.c 4, 10
automatic padding 8

B

big endian 6

building ARM subroutines 9
building Windows DLLs 9
byte boundary alignment 7
byte swapping 6
ByteSwapl16 macro 7
ByteSwap32 macro 7

C

calling ARM subroutines 4
calling Palm OS API functions 4
concepts 1

E

Emulator

see Palm OS Emulator 5
endianness 6
endianutils.h 7,10

example_data_type.h 10
exchanging data 4

G

gcc compiler 9

included files 10
integer alignment 7

L

little endian 6
local variables 8
locking resource 4

M

Microsoft Visual C++ 9
Motorola processor 1

P
PACE, definition 2

Palm Application Compatibility Environment 2

Palm OS5 1

Palm OS Emulator 5

Palm OS Simulator 5, 8
PceNativeCall 4

performance considerations 2,5
PilRC 10

R

R file 10
Read68KUnaligned32 macro 8
resource file 10

S

sample ARM subroutine 4
sample_project.mcp 12
simnative.cpp 11
simnative.h 11
simple.dsp 11
Simulator

see Palm OS Simulator 5, 8

Palm OS 5 ARM Programming 13

Starter.c 12 U

Starter.rsrc 12 userData68KP 6
StarterRsc.h 12 using an ARM code resource file 10
stdafx.cpp 11 using ARM subroutines 3

stdafx.h 11

structure packing 8 Vv

T Visual C++ 9
testing ARM subroutines 8 i

Write68KUnaligned32 macro 8
writing ARM subroutines 4

14 Palm OS 5 ARM Programming

	Palm OS 5 ARM Programming
	Table of Contents
	Palm�OS�5 ARM Programming
	Understanding Palm�OS�5 and ARM
	Palm Application Compatibility Environment

	Using ARM Subroutines
	Calling ARM Subroutines
	Writing ARM Subroutines
	Isolate the Performance-Critical Area in Your 68K Application
	Convert the ARM Subroutine to Take One Argument
	Handle 68K and ARM Technical Differences
	Test the ARM Subroutine
	Build the ARM Subroutine

	Overview of Included Files
	ARM Subroutine Sample Files
	Windows DLL Sample Files
	CodeWarrior Project Sample Files

	Index
	Symbols
	Numerics
	A
	B
	C
	E
	G
	I
	L
	M
	P
	R
	S
	T
	U
	V
	W

