VI
palmsource
N’

Palm OS® Programming
Development Tools Guide

Palm OS® 5 SDK (68K) R3

CONTRIBUTORS

Written by Brian Maas
Engineering contributions by Keith Rollin, Ken Krugler, Jesse Donaldson, Andy Stewart, Kenneth Alban-
owski, and Derek Johnson

Copyright © 1996 - 2003, PalmSource, Inc. and its affiliates. All rights reserved. This documentation may
be printed and copied solely for use in developing products for Palm OS® software. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the foregoing, no
part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation or adaptation) without express written
consent from PalmSource, Inc.

PalmsSource, Inc. reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of PalmSource, Inc. to provide notification of such revision or
changes.

PALMSOURCE, INC. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR WARRANTIES THAT
THE DOCUMENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR
YOUR USE. THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALMSOURCE, INC. AND
ITS SUPPLIERS MAKE NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER
IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES,
TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
SATISFACTORY QUALITY. TO THE FULL EXTENT ALLOWED BY LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF
OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN IF PALMSOURCE, INC. OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMessenger,
MultiMail, Palm.Net, PalmPak, PalmConnect, PalmGlove, PalImModem, PalmPoint, PalmPrint,
PalmSource, Palm, the Palm logo, MyPalm, PalmGear, PalmPix, PalmPower, AnyDay, EventClub,
HandMAIL, the HotSync logo, Palm Powered, the Palm trade dress, Simply Palm, ThinAir, and WeSync
are trademarks of PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks
or registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT
ACCOMPANYING THE COMPACT DISC.

Palm OS Programming Development Tools Guide PalmSource, Inc.
Document Number 3011-006 1240 Crossman Avenue
July 9, 2003 Sunnyvale, CA 94089
For the latest version of this document, visit USA

http://www.palmos.com/dev/support/docs/. www.palmsource.com

http://www.palmsource.com
http://www.palmos.com/dev/support/docs/

Table of Contents

About This Document Xiil
Palm OS Documentation.Xxi
What This Volume ContainsXV
SummaryofChangesXV
Additional Resources XV

1 Using Palm Debugger 1
About Palm Debugger. .2
Connecting Palm Debugger Wlth a Target A4

Connecting to The Palm OS Emulator. .4
Connecting to The Handheld Device . . . A4
Using the Console and Debugging Windows Together . 8
Entering Palm Debugger Commands . I
Palm DebuggerMenus10
Palm Debugger Command Syntax 12
Using the DebuggingWindow 15
Using Debugger Expressions 17
Performing Basic Debugging Tasks 22
Advanced Debugging Features. 29
Using the Source Window e ¥
DebuggmgwlththeSourceWmdow. R X
Using Symbol Files. 33
Using the Source Menu e 71
Source Window Debugging L|m|tat|ons C e 36
Palm Debugger Error Messages. 36
Palm Debugger Tipsand Examples 37
Performing Calculations 38
Shortcut Characters. 38
Repeating Commands 38
Finding a Specific Function e 12
Finding Memory Corruption Problems Ce R
Displaying Local Variables and Function Parameters R 7
Changing the Baud Rate Used by Palm Debugger 47
Debugging Applications That Use the Serial Port. 48

Palm OS Programming Development Tools Guide iii

Importing System Extensions and Libraries 48
Determining the Current Location Within an Application . . 49

2 Palm Debugger Command Reference 51
Command Syntax., .. bl
Specifying Numeric and AddressValues 53
Using the Expression Language 53
Debugging Window Commands 53
alias 55
aliases Lo 55
atb o o0 55
atc056
ad56
atr056
1 o Y 4
bootstrap 58
br 58
brc. 58
brd. 59
cardinfo. N
cl. . . 60
db 60
diro 60
o | 62
dm. 63
dump. 63
dw.o b4
ax . ..o b4
fo 64
fill 65
fl. 65
ft. 66
fw 66

iv. Palm OS Programming Development Tools Guide

6 | o Y
hchk 68
hdo 68
help oo 70
hl . s 70
ht . . . 71
il . R 4
info. 72
keywords13
load T3
opened e T4
PeENV L e e 74
reg.o
reset 15
FUN. o o e e e e e 76
£
saveo e oo 16
sb . . s 77
] 77
SCO e e 78
SCT . . . e e e 78
sizeof. 19
sl. . 79
SS . e e e 80
storeinfoo 80
SW . . L e e e s e 81
O <) §
templateso 82
typedef8
typeend. Lo 83
vVar L s e e e e 83
variables 0oL 84
Wh . . s s 84
Debugging Command Summary 85
Flow ControlCommands 85

Palm OS Programming Development Tools Guide v

Memory Commands .
Template Commands .
Register Commands
Utility Commands .
Console Commands

Miscellaneous Debugger Commands .

Debugger Environment Variables.
Predefined Constants .

3 Debugger Protocol Reference

About the Palm Debugger Protocol .
Packets . :

Packet Structure .
Packet Communications.

Constants . :

Packet Constants.
State Constants
Breakpoint Constants .
Command Constants .

Data Structures. :
_SysPktBodyCommon
SysPktBodyType .
SysPktRPCParamType
BreakpointType o

Debugger Protocol Commands .
Continue .

Find Coe

Get Breakpoints .
Get Routine Name .
Get Trap Breaks .

Get Trap Conditionals.
Message

Read Memory .

Read Registers .

RPC

85

. 87

87

. 87
. 87
. 88
. 88
. 89

91

.91

92
92

. 94

94
94
95
95
95
97

.97
.97
. 98

98

.99

99

. 100
. 101
. 102
. 104
. 105
. 106
. 107
. 108
. 109

Vi

Palm OS Programming Development Tools Guide

Set Breakpoints10

SetTrapBreaks111
Set Trap Conditionals.12
State P I
ToggIeDebuggerBreaks P
Write Memory16
Write Registers. e 4
SummaryofDebuggerProtocoI Packets I I
4 Using the Console Window 121
About the Console Window121
Connecting the Console Window122
Activating Console Input 122
Using ShortcutNumberstoActlvatetheWmdows. ... 123
Entering Console Window Commands125
Command Syntax. 22
Specifying NumerlcandAddressVaIues C e 130
Console Window Commands130
addrecord.13
addresourceo
attachrecord.o 0L 132
attachresource132
battery133
cardformat133
cardinfo.13
changerecord 134
changeresource134
close13
coldboot13
create.136
del13
delrecord137
delresource137
detachrecord.138
detachresource.138

Palm OS Programming Development Tools Guide vii

dir .

dm. .
doze .
exit.
export
feature .
findrecord.
free.

gdb.

getresource .

gremlin .
gremlinoff.
he . .
hchk .

hd .

help

hf

hi

hl

hs

ht o
htorture.
import .
info.

kinfo .
launch
listrecords .

listresources .

lock
log .
mdebug.

moverecord .

new
open .
opened .

. 138
. 140
141
141
141
. 142
. 143
. 144
. 144
. 144
. 145
. 145
. 145
. 146
. 146
. 148
. 148
. 148
. 149
. 149
. 150
. 150
.151
. . 153
. 153
. 154
. 155
. 155
. 155
. 156
. 156
. 157
. 158
. 158
. 159

Vil

Palm OS Programming Development Tools Guide

performance.159
poweron160
reset160
resize. 161
saveimages 102
£ o 5 Lo ¥ I
setinfo162
setowner u162
setrecordinfo163
setresourceinfo.163
simsync. 164
sleep 164
storeinfol64
switch165
sysalarmdump.165
unlock166
Console Command Summary166
Card Information Commands166
Chunk Utility Commands.167
Database Utility Commands.167
Debugging Utility Commands167
GremlinCommands168
Heap Utility Commands168
Host Control Commands168
Miscellaneous Utility Commands168
Record Utility Commands.169
Resource Utility Commands.169
System Commands.170

5 Using Palm Reporter 171
About Palm Reporter171

Palm Reporter Features171
Downloading Palm Reporter.172
Palm Reporter Package Files.172
Installing Palm Reporter172

Palm OS Programming Development Tools Guide ix

Adding Trace Calls to Your Application173

Specifying Trace Strings.174

Trace Functions ina Code Sample175

Displaying Trace Information in Palm Reporter.175

Starting a Palm Reporter Session 176

Filtering Information in a Palm ReporterSessmn T Y 4

Using the Palm Reporter Toolbar.178

Troubleshooting Palm Reporter.179

6 Using the Overlay Tools 181
Using Overlays to Localize Resources181

Overlay Database Names182

Overlay Specification Resources182

About the Overlay Tools.183

Using the PRC-to-Overlay Function.183

How the PRC-to-Overlay FunctionWorks183
Choosingalocale183
Modifying the FilterSet.184

PRC20OVL Example.185

Using the Patch Overlay Function.186

PRC20VL Options Summary187

Getting Help. N <10

Using PRC20VL on the I\/Iacmtosh N <10
OpeningaPRCfile.189

SelectingResources.189

A Resource Tools 191
B Simple Data Types 193
Index 195

x Palm OS Programming Development Tools Guide

Palm OS Programming Development Tools Guide xi

About This
Document

Palm OS® Programming Development Tools Guide describes various
tools you can use to develop software for Palm Powered™
handhelds.

Palm OS Documentation

In addition to this book, you may be interested in the following
Palm OS documentation:

Document Description

Palm OS Programmer’s ~ An API reference document that contains descriptions of all
API Reference Palm OS function calls and important data structures.

Palm OS Programmer’s A guide to application programming for the Palm OS. These
Companion, vol. I and volumes contain conceptual and “how-to” information that
Palm OS Programmer’s ~ complements Palm OS Programmer’s API Reference.
Companion, vol. Il,

Communications

Using Palm OS Emulator A guide to testing applications with Palm OS Emulator,
including a reference of the Host Control API functions. The
information in this book was previously part of Palm OS
Programming Development Tools Guide.

Testing with Palm OS A guide to testing application with Palm OS Simulator.
Simulator

Constructor for Palm OS A guide to creating application interfaces using Constructor
for Palm OS.

Palm OS User Interface A guide describing how to design applications for Palm
Guidelines Powered handhelds.

Palm OS Programming Development Tools Guide xiii

About This Document
What This Volume Contains

What This Volume Contains

This volume is designed for random access. That is, you can read
any chapter in any order. In general, each chapter covers a different
Palm OS development tool, though chapters 2 through 4 discuss
topics relating to Palm Debugger.

Here is an overview of this volume:

= Chapter 1, “Using Palm Debugger,” on page 1. Provides an
introduction to Palm Debugger, which is an assembly
language and limited source code level debugger for Palm
OS programs. This chapter describes how to use Palm
Debugger, including a description of its expression language
and a variety of debugging strategies and tips.

= Chapter 2, “Palm Debugger Command Reference,” on
page 51. Provides a complete reference description for each
command available in Palm Debugger.

= Chapter 3, “Debugger Protocol Reference,” on page 91.
Describes the API for sending commands and responses

between a debugging host, such as Palm Debugger, and a
debugging target, which can be a Palm Powered handheld
ROM or an emulator program such as Palm OS Emulator.

= Chapter 4, “Using the Console Window,” on page 121.
Describes how the Console Window can be used to perform
maintenance and do high-level debugging of a Palm
handheld device.

= Chapter 5, “Using Palm Reporter,” on page 171. Describes
Palm Reporter, which is a trace utility that can be used with
Palm OS Emulator.

= Chapter 6, “Using the Overlay Tools,” on page 181. Describes
how you can create national language versions of your

application by creating interface overlays.

= Appendix A, “Resource Tools.” on page 191. Provides a short
description of resource tools that can be used to develop
application resources.

= Appendix B, “Simple Data Types.” on page 193. Describes
the simple data type name changes made in recent versions

of the Palm OS software.

xiv Palm OS Programming Development Tools Guide

About This Document
Summary of Changes

Summary of Changes

= Chapters from the prior edition of this manual (*“Using Palm
OS Emulator” and “Host Control API’’) have been moved
from this book into a new manual called Using Palm OS
Emulator. For more information, see the Palm OS
documentation web page.

= Chapter 5, “Using Palm Reporter,” on page 171 has been
updated to include information on the Macintosh version of
Palm Reporter.

Additional Resources

< Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

= Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

= Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

Palm OS Programming Development Tools Guide xv

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Using Palm
Debugger

Palm Debugger is a tool for debugging Palm OS® applications. Palm
Debugger is available for use on both Mac OS and Windows
platforms.

This chapter provides an introduction to and overview of using
Palm Debugger. The commands that you can use are described in
Chapter 2, “Palm Debugger Command Reference.”

This chapter contains the following sections:

= “About Palm Debugger” on page 2 provides a broad
overview of the program and a description of its windows.

= “Connecting to The Handheld Device” on page 4 describes
how to connect Palm Debugger with the Palm OS Emulator

or with a Palm Powered™ handheld device.

= “Using the Console and Debugging Windows Together” on
page 8 describes how to use the menus and keyboard to send
commands to the handheld device from the debugging and
console windows.

= “Using the Debugging Window” on page 15 and “Using the
Source Window” on page 32 describe the command and
display capabilities available in each of these windows. The
debugging window section also includes a full description of

“Using Debugger Expressions” on page 17.

= “Palm Debugger Error Messages” on page 36 describes how
to decode the error messages you receive from Palm
Debugger.

= “Palm Debugger Tips and Examples” on page 37 provides a
collection of tips to make your debugging efforts easier and
examples of performing common debugging tasks.

Palm OS Programming Development Tools Guide 1

Using Palm Debugger
About Palm Debugger

About Palm Debugger

Palm Debugger provides source and assembly level debugging of
Palm OS applications, and includes the following capabilities:

= support for managing Palm OS databases
= communication with Palm™ handheld devices

< communication with Palm OS Emulator, the Palm emulation
program

< command line interface for system administration on Palm
handheld devices

NOTE: You can use Palm Debugger with a Palm Powered
handheld device, or with the Palm OS Emulator program.
Debugging is the same whether you are sending commands to
the emulator or to actual hardware. Connecting with either a
handheld device or the Emulator is described in “Connecting

Palm Debugger With a Target” on page 4.

Palm Debugger provides two different interfaces that you can use to
send commands from your desktop computer to the handheld
device:

= The console interface is provided by the console nub on the
handheld device. You can connect to the console nub and
then send console commands to the nub from Palm
Debugger’s console window. The console commands are
used primarily for administration of databases on the
handheld device.

The console can also be used with Palm Simulator and the
CodeWarrior Debugger, and is documented in a separate
chapter. For more information about the console window
and the console commands, see Chapter 4, “Using the
Console Window.”

= The debugging interface is provided by the debugger nub on
the handheld device. You can attach to the debugger nub and
then send debugging commands to the debugger nub from
Palm Debugger’s debugging window. For more information

2 Palm OS Programming Development Tools Guide

Using Palm Debugger
About Palm Debugger

about using the debugging window and the debugging
commands, see “Using the Debugging Window” on page 15.

The console window and the debugging window each has its own
set of commands that you can use to interface with the handheld
device. The debugging commands are described in Chapter 2,
“Palm Debugger Command Reference,” and the console window
commands are described in Chapter 4, “Using the Console
Window.”

NOTE: The Palm OS Emulator emulates the console and
debugging nubs, which allows Palm Debugger to send the same
commands to the Emulator as it does to a handheld device.

On certain platforms, Palm Debugger also provides a multi-pane
source window for source-level debugging. You can use this
window if you have compiled your program with certain compilers
that generate an appropriate symbol file. Table 1.1 summarizes the
Palm Debugger windows.

Table 1.1 Palm Debugger Windows

Window name Usage

Console Command language shell for performing
administrative tasks, including database
management, on the handheld device.

CPU Registers Assembly language debugging output only

window.

Debugging Assembly language debugging command
window.

Source Source level debugging window.

NOTE: Source level debugging is not
currently available in the Macintosh version of
palm Debugger.

Palm OS Programming Development Tools Guide 3

Using Palm Debugger
Connecting Palm Debugger With a Target

Connecting Palm Debugger With a Target

You can use Palm Debugger to debug programs running on a Palm
Powered handheld device or to debug programs running on a
hardware emulator such as the Palm OS Emulator. This section
describes how to connect the debugger to each of these targets.

Connecting to The Palm OS Emulator

You can interact with the Palm OS Emulator from Palm Debugger
just as you do with actual hardware. With the emulator, you don’t
need to activate the console or debugger stubs. All you need to do is
follow these steps:

1. Inthe Palm Debugger Communications menu, select
Emulator. This establishes the emulator program as the
“device” with which Palm Debugger is communicating.

2. Inthe debugging window, type the at t command.

Connecting to The Handheld Device

You can interact with the handheld device from Palm Debugger by
issuing commands from the console window or from the debugging
window.

You must activate the console nub on the handheld device before
sending commands from the console window. For more information
on activating console input, see Chapter 4, “Using the Console
Window.”

WARNING! When you activate either the console nub or the
debugger nub on the handheld device, the device’s serial port is
opened. This causes a rapid and significant power drain. The only
way to close the port and stop the power drain is to perform a soft
reset.

Activating Debugging Input

If you are debugging with the Palm OS Emulator, you can activate
debugging input by sending the at t command from the debugging
window to the emulator.

4 Palm OS Programming Development Tools Guide

Using Palm Debugger
Connecting Palm Debugger With a Target

To send debugging commands to a hardware device, you must
connect your desktop computer to the handheld device, halt the
device in its debugger nub, and then type commands into the
debugging window of Palm Debugger.

IMPORTANT: When the handheld device is halted in its
debugger nub, a tiny square flashes in the upper left corner of the
screen, and the device does not respond to pen taps or key
presses.

You can use the following methods to halt the handheld in its
debugger nub:

1. Use the to enter debugger mode on the handheld device, as
described in “Using Shortcut Numbers to Activate the
Windows” on page 6.

2. If you have already activated the console nub, you can use
the Break command in the Source menu to activate the
debugger nub. The Break command sends a key command to
the handheld device that is identical to using the sequence.

3. Compile a DogBr eak() call into your application, and run
the application until you encounter that call.

This method only works if you have already entered
debugger mode once, or if you have set the low memory
global variable GDbgWasEnt er ed to a non-zero value,
which tricks the handheld into thinking that the debugger
was previously entered. For example, you can use the
following code in your application to ensure that your break
works:

GDbgWasEnt ered = true;
DbgBreak() ;

4. You can hold the down button and press the reset button in
the back of the device.
This halts the device in the SmallROM debugger, which is the
bootstrap code that can initialize the hardware and start the
debugger nub. Enter the g command, and the system jumps

Palm OS Programming Development Tools Guide 5

Using Palm Debugger
Connecting Palm Debugger With a Target

into the BigROM, which contains the same code as the
SmallROM and all of the system code.

If you press the down button on the handheld device while
executing the g command, you land in the BigROM'’s
debugger. This lets you set A-trap breaks or single step
through the device boot sequence.

Verifying Your Connection

If Palm Debugger is running and connected when the handheld
device halts into its debugger nub, the debugging window displays
a message similar to the following:

EXCEPTION I D = $A0
' SysHandl eEvent'
+$0512 10COEEFE *MOVEQ L #$01,D0 | 7001

Alternatively, if Palm Debugger is not connected or running when
the device halts, you can use the at t command to attach Palm
Debugger to the device.

IMPORTANT: The debugger nub activates at 57,600 baud, and
your port configuration must match this is you are connecting over
a serial port. You can set the connection parameters correctly
with Palm Debugger Connection menu.

After you activate the debugger nub on the handheld device, the
nub prevents other applications, including HotSync® from using
the serial port. You have to soft-reset the handheld device before
the port can be used.

Using Shortcut Numbers to Activate the Windows

The Palm OS responds to a number of “hidden’ shortcuts for
debugging your programs, including shortcuts for activating the
console and debugger nubs on the handheld device. You generate
each of these shortcuts by drawing characters on your Palm
Powered device, or by drawing them in the Palm OS Emulator

6 Palm OS Programming Development Tools Guide

Using Palm Debugger
Connecting Palm Debugger With a Target

program, if you are using Palm OS Emulator to debug your
program.

NOTE: If you open the Find dialog box on the handheld device
before entering a shortcut number, you get visual feedback as
you draw the strokes.

To enter a shortcut number, follow these steps:

1. On your Palm Powered device, or in the emulator program,
draw the shortcut symbol. This is a lowercase, cursive “L”
character, drawn as follows:

Next, tap the stylus twice, to generate a dot (a period).

Next, draw a number character in the number entry portion
of the device’s text entry area. Table 1.2 shows the different
shortcut numbers that you can use.

For example, to activate the console nub on the handheld
device, enter the follow sequence:

Q2

Palm OS Programming Development Tools Guide 7

Using Palm Debugger
Connecting Palm Debugger With a Target

Table 1.2 Shortcut Numbers for Debugging

Shortcut Description Notes
The device enters debugger This mode opens a serial port, which
'Q mode, and waits for a low-level drains power over time.
‘ debugger to connect. A flashing
square appears in the top left You must perform a soft reset or use the
corner of the device. debugger’sr eset command to exit this
mode.
The device enters console This mode opens a serial port, which
'Q o mode, and waits for drains power over time.
communication, typically from
a high-level debugger. You must perform a soft reset to exit
this mode.

The device’s automatic power- You can still use the device’s power
'Q 3 off feature is disabled. button to power it on and off. Note that
' your batteries can drain quickly with
automatic power-off disabled.

You must perform a soft reset to exit
this mode.

NOTE: These debugging shortcuts leave the device in a mode
that requires a soft reset. To perform a soft reset, press the reset
button on the back of the handheld with a blunt instrument, such
as a paper clip.

Using the Console and Debugging Windows
Together
When Palm Debugger is attached to a handheld device or emulator

program, you cannot talk to the console nub on the device.
However, a subset of the console commands — those that do not

8 Palm OS Programming Development Tools Guide

Using Palm Debugger
Entering Palm Debugger Commands

change the contents of memory— are available from the debugging
window. These include the following commands:

edir
= hl
= hd
e hc

= ndebug
e reset

You can enter these commands in either the debugging window or
the console window when the debugger nub is active. When you
enter a console command while the debugging window is attached,
the command is sent to the debugger nub rather than the console
nub.

You can use the console commands while debugging for purposes
such as displaying a heap dump in the console window while
stepping through code in the debugging window.

Entering Palm Debugger Commands

Most of your work with Palm Debugger is done with the keyboard.
You enter console commands into the console window, and
debugging commands into the debugging window. Both of these
windows supports standard scrolling and clipboard operations.

Table 1.3 summarizes the keyboard commands that you can use to
enter commands in Palm Debugger’s console or debugging
windows.

Palm OS Programming Development Tools Guide 9

Using Palm Debugger
Entering Palm Debugger Commands

Table 1.3 Entering Palm Debugger Commands From the

Keyboard
Command description Windows key(s) Macintosh key(s)
Execute selected text as ENTER Enter on numeric keypad,

command(s). You can select
multiple lines to sequentially
execute multiple commands.

Execute the current line (no text

selected).
Display help for a command Hel p <cndNane>
Enter a new line without SHIFT+ENTER

executing the text

Copy selected text from window CTRL+C
to clipboard

Paste clipboard contents to CTRL+V
window

Cut selected text from window to CTRL+X
clipboard

Delete previous command’s CTRL+Z
output from the window

Delete all text to the end SHIFT+Backspace

or
CMD+RETURN

Hel p <cndNane>

RETURN

CMmD+C

CMD+V

CMD+X

Not available

CMD+DELETE

Palm Debugger Menus

Palm Debugger includes five menus, as summarized in Table 1.4.
The most commonly used menu commands are on the Connection
and Source menus; these commands are described in other sections

in this chapter.

10 Palm OS Programming Development Tools Guide

Using Palm Debugger
Entering Palm Debugger Commands

Table 1.4 Palm Debugger Menu Commands

Menu

Commands

Descriptions

File

Edit

Connection

Open
Save
Save As

Commands for saving and
printing the contents of a
window.

Page Setup...
Print

Exit

Undo
Redo

Standard editing commands

Cut
Copy
Paste
Select All

Find
Find Next

Font

(select baud rate)

For setting up how to

Handshake

communicate with the handheld
device or Palm OS Emulator.

(select connection port)

Palm OS Programming Development Tools Guide 11

Using Palm Debugger
Entering Palm Debugger Commands

Table 1.4 Palm Debugger Menu Commands (continued)

Menu Commands Descriptions

Source Break Source code debugging
commands, for use in

Step Into _) "
Step Over co_njunctlon with the source
Go window.

Go Till

Toggle Breakpoint NOTE: Source level
Disassemble at Cursor debugging is not currently
Show Current Location available in the Macintosh

Install Database and Load Symbols Version of Palm Debugger.

Load Symbols

Load Symbols for Current Program
Counter

Remove All Symbols

Window Cascade Standard window access
Tile commands.
Arrange Icons
Close All NOTE: Only available on
Keyboard Simulator... Windows systems.

(select numbered window)

Palm Debugger Command Syntax

Palm Debugger’s help facility uses simple syntax to specify the
format of the commands that you can type in the console and
debugging windows. This same syntax is used in Chapter 2, “Palm

Debugger Command Reference.” This section summarizes that
syntax.

The basic format of a command is specified as follows:
comandNane <par amet er>* [options]
commandNanme The name of the command.

12 Palm OS Programming Development Tools Guide

Using Palm Debugger
Entering Palm Debugger Commands

par anet er Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by
the | character.

options Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window
and with the backslash (\) character in the
debugging window.

NOTE: Any portion of a command that is shown enclosed in
square brackets (“[* and “]”) is optional.

The following is an example of a command definition
dir (<cardNune| <srchOptions>) [displayOptions]

The di r command takes either a card number of a search
specification, followed by display options.

Here are two examples of the di r command sent from the console
window:

dir 0 -a
dir -t rsrc

And here are the same two commands sent from the debugging
window:

dir 0 \a
dir \'t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash (in the console window) or backslash

Palm OS Programming Development Tools Guide 13

Using Palm Debugger
Entering Palm Debugger Commands

(in the debugging window). For example:

-C
-enabl e
\ enabl e

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\tenp\nyLogFile
\'t Rsrc

Specifying Numeric and Address Values

Many of the debugging commands take address or numeric
arguments. You can specify these values in hexadecimal, decimal, or
binary. All values are assumed to be hexadecimal unless preceded
by a sign that specifies decimal (#) or binary (%99. Table 1.5 shows
values specified as binary, decimal, and hexadecimal in a debugging
command:

Table 1.5 Specifying Numeric Values in Palm Debugger

Hex value Decimal value Binary value
64 or $64 #100 291100100
F5 or $F5 #245 941110101
100 or $100 #256 2400000000

IMPORTANT: Some register names, like AO and D4, look like
hexadecimal values. You must preface these values with the
dollar sign ($) character, or you will get the value of the register.
For example, A4 + 3 computes to the value of the A4 register
added with three, but $A4 + 3 computes to $A7.

For more information, see “Specifying Constants” on page 17.

14 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

Using the Debugging Window

You use the debugging window to enter debugging commandes,
which are used to perform assembly language debugging of
applications on the handheld device. Commands that you type into
the debugging window are sent to the debugger nub on the
handheld device, and the results sent back from the device are
displayed in the debugging window.

The debugging window provides numerous capabilities, including
the following:

= A rich expression language for specifying command
arguments, as described in “Using Debugger Expressions”
on page 17.

= Ability to debug applications, system code, extensions,
shared libraries, background threads, and interrupt handlers.

= Custom aliases for commands or groups of commands, as
described in “Defining Aliases” on page 31.

= Script files for saving and reusing complex sequences of
commandes, as described in “Using Script Files” on page 31.

= Templates for defining data structure layouts in memory,
which allow you to view a structure with the memory
display commands. Templates are described in “Defining
Structure Templates™ on page 29.

= Your aliases and templates can be saved in files that are
automatically loaded for you when Palm Debugger starts
execution, as described in “Automatic Loading of
Definitions” on page 31.

This section also provides examples of using some of the more
common debugging commands:

= See “Displaying Registers and Memory” on page 23 for
examples of using the debugging commands to display the

current register values.

= See “Using the Flow Control Commands™ on page 25 for
examples of using commands to set breakpoints.

= See “Using the Heap and Database Commands” on page 28
for examples of using commands to examine the heap and
databases.

Palm OS Programming Development Tools Guide 15

Using Palm Debugger
Using the Debugging Window

The remainder of this section describes how to use these
capabilities. Table 1.6 shows the most debugging window command

categories.

Table 1.6 Debugging Window Command Categories

Category Description Commands
Console Commands shared with the console cardi nfo, dir, hchck,
window for viewing card, database, hd, hl, ht, info,
and heap information. opened, storeinfo
Flow Control Commands for working with atb, atc, atd, br,
breakpoints, A-traps, and program brc, cl, brd, dx, g,
execution control. gt, s, t, reset
Memory Commands for viewing the registers, atr, db, dl, dm dw,
and for displaying and setting fb, fill, fl, ft, fw,
memory, the stack, and system il, reg, sh, sc, sc6,
function information. sc7, sl, sw, wh
Miscellaneous Commands for displaying debugging att, hel p, penv
help and current debugging
environment information.
Template Commands for defining and > sizeof, typedef,
reviewing structure templates. t ypeend
Utility Commands for working with aliases, alias, aliases,
symbol files, and variables. boot strap, keywords,
| oad, run, save, sym
tenpl ates, var,
vari abl es

All of the debugging commands are described in detail in Chapter 2,
“Palm Debugger Command Reference.”

Before you can use the debugging commands, you must attach Palm
Debugger to the debugger nub on the handheld device, as described
in “Activating Debugging Input” on page 4.

16 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

Using Debugger Expressions

Palm Debugger provides a rich expression language that you can
use when specifying arguments to the debugging commands. This
section describes the expression language.

NOTE: Debugger expressions cannot contain white space.
White space delimits command parameters; thus, any white
space ends an expression.

Specifying Constants

The expression language lets you specify numbers as character
constants.

Character Constants

A character is a string enclosed in single quotes. The string can
include escape sequences similar to those used in the C language.
For example:

'xyz1'
tal' e
"\ 123

Character constants are interpreted as unsigned integer values. The
size of the resulting value depends on the number of characters in
the string, as follows:

Number of characters Result type

1 character U nt8
2 characters Ul nt 16

more than 2 characters Ul nt 32

Palm OS Programming Development Tools Guide 17

Using Palm Debugger
Using the Debugging Window

Binary Numbers

To specify a binary number, use the percent sign (%) character
followed by any number of binary digits. For example:

990111000
%4010

The size of the resulting value is determined as follows:

Number of Digits Result Type
1to8 u nt8

8to 16 U nt 16
more than 16 Ul nt 32

Decimal Numbers

To specify a decimal number, use the # character followed by any
number of decimal digits. For example:

#256
#32756

Hexadecimal Numbers

Palm Debugger interprets hexadecimal digit strings that are not
preceded by a special character as hexadecimal numbers. You can
optionally use the dollar sign ($) character to indicate that a value is
hexadecimal. For example:

cl23
C123
FO
$A0

The size of the resulting value is determined as follows:

Number of digits Result type

1to?2 Ul nt 8

18 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

Number of digits Result type
3to4 U nt16
more than 4 Ul nt 32

WARNING! If you want to specify a hexadecimal value that can
also be interpreted as a register name, you must preface the
value with the dollar sign ($) symbol. For example, using A0 in an
expression will generate the current value of the AO register, while
using $A0 will generate the hexadecimal equivalent of the decimal
value 160.

Using Operators

Palm Debugger expression language includes the typical set of
binary and unary operators, as summarized in Table 1.7.

Table 1.7 Palm Debugger Expression Language

Operators
Type Operator Description Example
Cast .a Casts the value to an address. off0.a
b Casts the value to a byte. 45.b
A Casts the value to a double word. 45. |
. W Casts the value to a word. 45. w
.S Extends the sign of its operand without 45. s
changing the operand’s size.
Unary ~ Performs a bitwise NOT of the operand. ~1
- Changes the sign of the operand. 2*-1
Dereference @ Dereferences an address or integer value. Q@A7

See Table 1.8 for more examples.

Arithmetic * Multiplies the two operands together. Al* 2

Palm OS Programming Development Tools Guide 19

Using Palm Debugger
Using the Debugging Window

Table 1.7 Palm Debugger Expression Language

Operators (continued)

Type Operator Description Example
/ Divides the first operand by the second 21/ 3
operand.
+ Adds the two operands together. A2+2
- Subtracts the second operand from the A2-2
first operand.
Assignment = Assigns the second operand value to the d0=45
register specified as the first operand.
Bitwise & Performs a bitwise AND operation. A7&FFF
A Performs a bitwise XOR operation. A2"FOFO0
| Performs a bitwise OR operation. A2| 94011

The Dereference Operator

The @dereference operator is similar to the * dereference operator
used in the C programming language. This operators dereferences
an address value, as shown in Table 1.8.

Table 1.8 Dereference Operator Examples

Expression Description Example

@ Retrieves 4 bytes as an unsigned QA7
integer value

@a Retrieves 4 bytes as an address @ a(Al)

@b Retrieves 1 byte as an unsigned @ b(PO
integer value

@w Retrieves 2 bytes as an unsigned @ wW PC)
integer value

@] Retrieves 4 bytes as an unsigned @l (A2)

integer value

20 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

Register Variables

The expression language provides named variables for each register.
The names of these variables are replaced by their respective
register values in any expression. Table 1.9 shows the register name
variables.

Table 1.9 The Built-in Register Variables

Variable name Description

a0 address register 0
al address register 1
az2 address register 2
a3 address register 3
a4 address register 4
a5 address register 5
a6 address register 6
a7 address register 7
do data register 0

dl data register 1

dz2 data register 2

d3 data register 3

d4 data register 4

d5 data register 5

dé data register 6

d7 data register 7

pc the program counter
sr the status register
sp the stack pointer

(this is an alias for a7)

Palm OS Programming Development Tools Guide 21

Using Palm Debugger
Using the Debugging Window

NOTE: The expression parser interprets any string that can
represent a register name as a register name. If you want the
string interpreted as a hexadecimal value instead, precede it with
either a 0 or the dollar sign ($) character.

For example, the following expression:
a0+do
Adds the values stored in the a0 and dO registers together.

If you want to add the value 0xdO to the value stored in register
a0, use one of the following expressions:

a0+0do

a0+3$do

Special Shortcut Characters

Palm Debugger’s expression language includes the two special
value characters show in Table 1.10. These characters are converted
into values in any expression.

Table 1.10 Special Value Expression Characters

Character Converts into Examples
The most recently entered address. dm .
dm . +10

The starting address of the current [
routine. il +24

Performing Basic Debugging Tasks

This section describes how to use Palm Debugger to perform three
of the most common debugging tasks:

= displaying memory values
= setting breakpoints and using the flow control commands
= examining the heap

22 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

The final section of this chapter, “Palm Debugger Tips and
Examples” on page 37, provides examples of how to perform other
debugging tasks.

Assigning Values to Registers

You can use the assignment operator (=) to assign a value to a
register. However, if you include white space around the operator,
the assignment does not work. For example, the following
statement correctly assigns a value to the program counter:

pc=010c8954

However, this statement does not assign the correct value to the
program counter:

pc = 010c8954c

Displaying Registers and Memory

One of the primary operations you perform with a debugger is to
examine and change values in memory. Palm Debugger provides a
number of commands for displaying registers, memory locations,
the program counter, and the stack. Table 1.11 summarizes the
commands you commonly use to examine memory and related
values.

Table 1.11 Frequently Used Memory Commands

Command Description

db Displays the byte value at a specified address.

dl Displays the 32-bit long value at a specified address.

dm Displays memory for a specified number of bytes or
templates.

dw Displays the 16-bit word value at a specified
address.

il Disassembles code in a specified line range or for a
specified function name.

reg Displays all registers.

sb Sets the value of the byte at the specified address.

Palm OS Programming Development Tools Guide 23

Using Palm Debugger
Using the Debugging Window

Table 1.11 Frequently Used Memory Commands (continued)

Command Description

sc Lists the A6 stack frame chain, starting at the
specified address.

sc7 Lists the A7 stack frame chain, starting at the
specified address.

sl Sets the value of the 32-bit long value at the
specified address.

S Sets the value of the word at the specified address.

Palm Debugger also lets you define structure templates and use
those for displaying memory values. For example, you can define a
structure that matches the layout of a complex data structure, and
then display that structure with a single dmcommand. For more
information about structure templates, see “Defining Structure

Templates” on page 29.

Listing 1.1 shows an example of displaying memory with the dm
command and disassembling memory with thei | command. Italso
provides several examples of using expressions with these
commands. In this example, bol df ace is used to denote
commands that you type, and <= starts a comment.

Listing 1.1 Displaying and Disassembling Memory

dm O
00000000:

dm 100
00000100:

dm #100
00000064:

dm 100+20

<=Di splay nmenory at address O

FF FF FF FF 1A 34 3E 40 10 C0 92 D4 10 CO 92 F2 "..... 45>@. "

<=Di splay nenory at address 0x100

01 01 00 00 02 BO OO0 01 78 30 00 00 OO0 01 47 EE "........ x0....G"

<=Di spl ay nenory at address 100 deci mal

10 C6 BE 32 10 C6 BE 60 10 C6 BE 8E 10 C6 BEBC "...2... "

<=Speci fy an address with an expression

00000120: 6F BC 00 00 07 22 00 00 00 06 00 01 7D 72 00 FD "o0...."...... br.o.u"

dm . +10

<=Use the'.' character for the npst recent addr

00000130: 00 00 00O 00 00 OO0 00 B6 3E CO 69 45 A4 0OC 03 4A "........ > iE ..J"

24 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

dm pc
10COEEFE: 70 01

dm pc+20
10C0EF1E: FF F4

il pc

' SysHandl eEvent
+$0512 10COEEFE
+$0514 10COEF00
+$0518 10COEF04
+$051C 10COEF08
+$051E 10COEFOA
+$0522 10COEFOE
+$0524 10COEF10
+$0528 10COEF14
+$052C 10COEF18
+$0530 10COEF1C

il pc-10

' SysHandl eEvent
+$0502 10COEEEE
+$0506 10COEEF2
+$050A 10COEEF6
+$0510 10COEEFC
+$0512 10COEEFE
+$0514 10COEFO00
+$0518 10COEF04
+$051C 10COEFO08
+$051E 10COEFOA
+$0522 10COEFOE

<=Use the current program counter val ue
60 00 01 7E 4E 4F AO BE 70 01 60 00 01 74 "p. ..~NO..p. ..t"

<=An expression using the program counter
4E 4F A0 AC 38 00 4A 44 50 4F 66 2A 48 6E "..NO.. 8. JDPOf * Hn"

<=Di sassenbl e code at current program counter
10COE9EC

*MOVEQ L #%$01, DO | 7001
BRA. W SysHandl eEvent +$0694 ; 10COF080 | 6000 O17E
_SysLaunchConsol e ; $10C0E30C | 4E4F AOBE
MOVEQ L #$01, DO | 7001
BRA. W SysHandl eEvent +$0694 ; 10COF080 | 6000 0174
MOVEQ L #$00, DO | 7000
BRA. W SysHandl eEvent +$0694 ; 10COF080 | 6000 O16E
CLR L -$0010(A6) | 42AE FFFO
PEA - $0006(A6) | 486E FFFA
PEA - $000C(A6) | 486E FFF4

<=Di spl ay code at program counter - 0x10
10C0E9EC
ORI . B #$01, (A5)+ ; '.' | 001D 7001
BRA. W SysHandl eEvent +$0694 ; 10COF080 | 6000 018C
MOVE. B #$01, $00000101 ; '.' | 11FC 0001 0101
_DbgBr eak | 4EA48
*MOVEQ L #%$01, DO | 7001
BRA. W SysHandl eEvent +$0694 ; 10COF080 | 6000 O17E
_SysLaunchConsol e ; $10C0E30C | 4EAF AOBE
MOVEQ L #$01, DO | 7001
BRA. W SysHandl eEvent +$0694 ; 10COF080 | 6000 0174
MOVEQ L #$00, DO | 7000

All of the commands mentioned in this section are described in
detail in Chapter 2, “Palm Debugger Command Reference.”

Using the Flow Control Commands

Palm Debugger provides a number of commands for setting
breakpoints and continuing the flow of execution. Table 1.12
summarizes the commands you commonly use for these purposes.

Palm OS Programming Development Tools Guide 25

Using Palm Debugger
Using the Debugging Window

Table 1.12 Commonly Used Flow Control Commands

Command

Description

atb
atc
atd
br

brc

brd

cl

gt

SS

Adds an A-trap break.
Clears an A-trap break.
Displays all A-trap breaks.
Sets a breakpoint.

Clears a breakpoint. This is the same as the cl
command.

Display all breakpoints.

Clears a breakpoint. This is the same as the br ¢
command.

Continues execution until the next breakpoint is
encountered.

Sets a temporary breakpoint at the specified
address, and resumes execution from the current
program counter.

Single steps one source line, stepping into functions.

Step-spy: step until the value of the specified
address changes.

Single steps one source line, stepping over
functions.

Listing 1.2 shows an example of setting breakpoints, disassembling,
and using other flow control commands to debug an application. In
this example, bol df ace is used to denote commands that you type,
and <= starts a comment.

26 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

Listing 1.2 Using the Debugging Flow Control Commands

sc <= Display stack craw, listed fromoldest to newest. In this
<= exanple, the current fcn was called from Event Loop+0016

Cal I'i ng chain using A6 Links:

A6 Frame Cal l er

00000000 10C68982 cjtkend+0000

00015086 10C6CA26 __ Startup__+0060

00015066 10C6CCCE Pil ot Mai n+0250

00014FC2 10C0F808 SysAppLaunch+0458

00014F6E 10C10258 PrvCal | Wt hNewSt ack+0016

00013418 10CD88B2 __ Startup__+0060

000133F8 10CDB504 Pil ot Mai n+0036

000133DE 10CDB47C Event Loop+0016

s <= Single-Step one instruction
' SysHandl eEvent' WII Branch
+$0514 10COEFO00 *BRA. W SysHandl eEvent +$0694 ; 10C0F080 | 6000 017E
<= Single step again by pressing the ENTER key
+$0694 10COF080 *MOVEM L (A7) +, D3- D5/ A2- A4 | 4CDF 1C38
<= Press ENTER again
+$0698 10COF084 *UNLK A6 | 4E5E
<= ... and again
+$069A 10COF086 *RTS | 4E75 8E53 7973 4861
<= ... and again
+$0018 10CDB47E *TST.B DO | 4A00

il <= Di sassenbl e at current program counter
' Event Loop 10CDB466'

+$0018 10CDB47E *TST.B DO | 4A00

+$001A 10CDB480 LEA $000C(A7), A7 | 4FEF 000C

+$001E 10CDB484 BNE. S Event Loop+$0050 ; 10CDB4B6 | 6630

C <= Remmi nder of disassenbly renpved here

gt 10cdb484 <= Co-Till address 0x10CDB484

+$001E 10CDB484 *BNE. S Event Loop+$0050 ; 10CDB4B6 | 6630

br :+50 <= Set a breakpoint at current routine+0x50

Br eakpoi nt set at 10CDB4B6 (Event Loop+0050)

g <= Go until a break occurs
+$0050 10CDB4B6 *CMPI . W #$0016, - $0018(A6) ; '..' | OC6E 0016 FFE8
brd <= Display all currently set breakpoints

10CDB4B6 (Event Loop+0050)

cl <= Clear all breakpoints

Palm OS Programming Development Tools Guide 27

Using Palm Debugger
Using the Debugging Window

Al | breakpoints cl eared

atb "Evt Get Event" <= Break whenever the EvtGetEvent systemtrap is called
A-trap set on 011d (Evt Get Event)

g <= Go until a break occurs
Renmot e stopped due to: A TRAP BREAK EXCEPTI ON

" BEvt CGet Event'

+$0000 10C3B1E2 *LI NK A6, $0000 | 4E56 0000

atc <= Clear all A-Traps
Al A-Traps cl eared

ss a2 <= Step-Spy until the U nt32 at address 0x15404 changes
<= (the current value of register A2 is 0x15404)
Step Spying on address: 00015404
" Evt Get SysEvent
+$00E8 10C1E980 *CLR. B $0008(A4) | 422C 0008

TIP: Some commands, like the at b command, require that the
operand be quoted. Forgetting to quote the trap name in the at b
command is a common mistake with Palm Debugger.

All of the commands mentioned in this section are described in
detail in Chapter 2, “Palm Debugger Command Reference.”

Using the Heap and Database Commands

You can use the heap and database commands to display
information about the databases and heaps on the handheld device.
These commands, which are summarized in Table 1.13, mirror
commands available from the console window.

Table 1.13 Commonly Used Heap and Database
Commands

Command Description

dir Lists the databases.
hchk Checks a heap.
hd Displays a dump of a memory heap.

28 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

Table 1.13 Commonly Used Heap and Database
Commands (continued)

Command Description

hi Lists all of the memory heaps on the specified
memory card.

ht Performs a heap summary.

The heap commands take heap ID values as parameters. The
following table shows the values you can use for heap IDs.

Heap ID Description
0 The dynamic heap.
1 The storage heap.

All of the commands mentioned in this section are described in
detail in Chapter 2, “Palm Debugger Command Reference.”

To learn more about the console window and all of the console
commands, see Chapter 4, “Using the Console Window.”

Advanced Debugging Features

This section presents several advanced features of the debugging
window of Palm Debugger, including the following:

= defining structure template for displaying memory
= defining aliases for commands
= using script files to run sequences of commands
= automated loading of structure and alias definitions at
program start-up time
Defining Structure Templates

You can define structure templates to use with Palm Debugger’s
memory display commands. Each template matches a data type or
structure type that you use in your application, which lets you
display a structure in the debugging window with one command.

Palm OS Programming Development Tools Guide 29

Using Palm Debugger
Using the Debugging Window

You define templates in a manner similar to the way you define
structure types in a high-level programming language: start a
template definition with the t ypedef command, follow with some
number of field definition (>) commands, and finish with a

t ypeend command. And once you have defined a structure
template, you can use fields of that type in other template
definitions.

Table 1.14 summarizes the commands you use to define and display
templates. For more information about these commands, see
Chapter 2, “Palm Debugger Command Reference.”

Table 1.14 Structure Template Commands

> Defines a structure field.

si zeof Displays the size, in bytes, of a template.
tenpl at es Lists the names of the debugger templates.
t ypedef Begins a structure definition block.

t ypeend Ends a structure definition block.

Note that the structure and field names must be quoted in your
structure template definition commands. Listing 1.3 shows the
debugging commands used to define a template named

Poi nt Type, and then defines a second template named

Rect angl eType that uses two Poi nt Type fields.

Listing 1.3 Defining and using two structure templates

typedef struct "Point Type"
> |Intle " X'

> |ntl6 "Y'

t ypeend

t ypedef struct "Rectangl eType"
> Poi nt Type "topLeft™

> Poi nt Type "extent”

t ypeend

si zeof Poi nt Type

30 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Debugging Window

Size = 4 byte(s)

si zeof Rectangl eType
Size = 8 byte(s)

dm 0 Rect angl eType

00000000 struct Rect angl eType
{
00000000 Poi nt Type topLeft
{
00000000 Int16 x = $-1
00000002 Intl16 vy = $-1
}
00000004 Poi nt Type extent
{
00000004 Int16 x = $1A34
00000006 Intl16 vy = $3E40
}

}

Defining Aliases

For convenience, you can create aliases. Each alias stands for a
specific command sequence. For example:

alias "checkheap"” "hchk 0 -c"
alias "Is" "dir 0"

After defining these aliases, you can type | s to display a directory
listing for card 0 (built-in RAM), and you can type checkheap to
check heap 0 with examination of each chunk.

Using Script Files

You use the run command to run a script file. A script file is any text
file that contains debugging commands. For example, the following
command reads and executes the debugging commands found in
the text file named My Commands:

run " MyCommands”

Automatic Loading of Definitions

When Palm Debugger is launched, it automatically runs the script
file named User St ar t upPal nDebugger. You can store your

Palm OS Programming Development Tools Guide 31

Using Palm Debugger
Using the Source Window

aliases, script files, and data structure templates in this file to have
them available whenever you use Palm Debugger.

Using the Source Window

This section describes the source window, which you can use to
perform limited debugging with the source code for your
application.

NOTE: Palm Debugger’s source level debugging is only
available on Windows systems, and is only available for code that
has been built using the GNU gcc compiler for Palm OS.

The source window works in conjunction with the debugging and
CPU registers windows. For example, if you single step in the
debugging window, the source window tracks along and displays
any breakpoints that are currently set.

The source window is split into two panes:

= The upper pane displays the values of local variables for the
current function.

= The lower pane displays the source code. This pane is
automatically updated whenever you move through your
code with flow control commands. You can also scroll this
pane to view the code or to set a breakpoint.

The left margin of the lower pane displays indicators for
breakpoints and the current program counter:

— asolid red circle is displayed next to a line that contains a
breakpoint

— agreen arrow is displayed next to the line containing the
current program location

The two panes in the source window are separated by a thick
horizontal line. This line is colored red when the connected
handheld device is halted in the debugger nub, and is green when
the handheld device is running code.

32 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Source Window

Debugging With the Source Window

To debug with the source code for an executable, you need to
associate a symbol file on your desktop computer with the
executable that is running on the handheld device. You can load any
number of symbol files into Palm Debugger at once; whenever the
device stops in the debugger nub, Palm Debugger automatically
determines which symbol file to display in the source window.

You can use the following steps to load an application and its
symbol file, and then use the source debugging commands:

1. Activate the console nub, as described in *“Activating
Console Input” on page 122.

2. Select Install Database and Load Symbols from the Source
menu.

3. Select the PRCfile to load onto the device.

4. Palm Debugger imports the PRCfile into the handheld device
and looks in the same directory for the associated symbol file.

Palm Debugger now associates the symbol file with the application
that has been imported into the handheld device. Whenever the

debugger nub breaks in the code for that application, the source
window displays the associated source file and line number.

You can also break into the debugger manually and set a breakpoint
on specific source code lines with Toggle Breakpoint in the Source
menu or on the source window’s context menu.

Using Symbol Files

This section provides information about symbol files. You need to
have a symbol file for your executable to use Palm Debugger’s
source code debugging facility.

Each symbol file represents a single code resource and is created by
the linker. Most Palm OS applications contain a single code resource
of type ' code' and a resource ID of 1. Some applications have
more than one code resource, and thus more than one symbol file.

A symbol file contains the following items:

= the names of each of the source files that were linked together
to create the code resource

Palm OS Programming Development Tools Guide 33

Using Palm Debugger
Using the Source Window

the offset from the start of the code resource to the object
code for each source file

the offset from the start of the code resource for each line in
the source file

descriptions of the data structures used

descriptions of the name, type, and location of each local
variable used in the source code’s functions

descriptions of the name, type, and location of each global
variable

To make use of a symbol file, Palm Debugger needs the address of
the code resource on the handheld device that corresponds to the
symbol file. The Load Symbols command on the Source menu
associates a symbol file on the desktop computer with a code
resource on the handheld device.

Using the Source Menu

Palm Debugger’s Source menu contains commands that you can
use for source level debugging. Table 1.15 summarizes these
commands. Note that several of these commands are also available
from the Source context menu, as described in the next section.

Table 1.15 Source Menu Commands

Command Description

Break Halts the handheld device in the
debugger nub by sending the same key
event as does the .

The device must be running the console
nub to activate this command.

Step Into Single steps one source line, and stops
if it steps into a subroutine.

Step Over Single steps one source line. If it steps
into a subroutine, doesn’t stop until the
subroutine returns.

34 Palm OS Programming Development Tools Guide

Using Palm Debugger
Using the Source Window

Table 1.15 Source Menu Commands (continued)

Command Description

Go Continues execution until a breakpoint
is encountered.

Go Till Sets a temporary breakpoint at the

Toggle Breakpoint

Disassemble at Cursor

Show Current Location

Install Database and
Load Symbols

Load Symbols

Remove All Symbols

currently selected line in the source
window and then continues execution.

Toggles a breakpoint on or off at the
currently selected line in the source
window.

Disassembles code at the currently
selected line in the source window. The
disassembled output is displayed in the
debugging window.

Scrolls the source window to show the
current line in the source file.

Imports a PRCfile into the handheld
device and looks in the same directory
for the associated symbol file.

Opens a symbol file for use by Palm
Debugger.

Unloads any loaded symbols.

Using the Source Window Context Menu

You can activate the source context menu by right clicking your
mouse in the source window. The context menu features many of
the commands are available in the Source menu, including:

= Break
Go Till
Toggle Breakpoint

Disassemble at Cursor

Show Current Location

Palm OS Programming Development Tools Guide 35

Using Palm Debugger
Palm Debugger Error Messages

The context menu also lists the source files for each symbol file that
is loaded. You can use this list to select which source file you want to
view.

Source Window Debugging Limitations

Source level debugging is limited in the current version of Palm
Debugger. Although you can perform some of your debugging with
the source window, you need to keep the following limitations in
mind to remember when you need to switch back to assembly
language debugging:

= You cannot display a stack crawl in the source window. You
need to switch to the debugging window and use the sc
command.

= Local variables that are structures or pointers to structures
display as hexadecimal addresses in the local variables pane
of the source window. To view the contents of these
structures, you need to use the dmcommand in the
debugging window.

= You cannot view global variables in the source window.
= Local variables are only displayed in hexadecimal format.

= You cannot change the values of local variables from the
source window. To change these values, you must use the
sb, sw, or sI commands in the debugging window.

Palm Debugger Error Messages

Most of the error messages displayed by Palm Debugger are
hexadecimal codes that can be difficult to understand. To determine
the meaning of the message, you need to look up the code in the
Palm OS header files.

Each error code is a 16-bit value, in which the upper byte represents
the code manager that generated the error, and the lower byte
represents the specific error code. For example, suppose that you
receive the following error message from Palm Debugger:

Error $00000219

36 Palm OS Programming Development Tools Guide

Using Palm Debugger
Palm Debugger Tips and Examples

The code manager code is 0x02, which is the Data Manager, and the
error code is 0x19, which is dnEr r Al r eadyExi st s.

The manager codes are located in the Syst enMgr . h header file.
The value 0x02 is defined as dnEr r or Cl ass.

The specific error codes for each manager are found in the header
file for that manager. For example, the value 0x19 is defined in
Dat aMgr . h asdnErr Al r eadyExi st s.

Palm Debugger Tips and Examples

This section provides a collection of tips and examples for working
with Palm Debugger, including the following sections:

e “Performing Calculations”

= Saving time with “Shortcut Characters” and “Repeating
Commands” on page 38

= “Finding a Specific Function” on page 38

= “Finding Memory Corruption Problems” on page 41

= “Displaying Local Variables and Function Parameters™” on

page 44
= “Changing the Baud Rate Used by Palm Debugger” on
page 47

e “Debugging Applications That Use the Serial Port” on
page 48

= “Importing System Extensions and Libraries” on page 48

« “Determining the Current Location Within an Application”
on page 49

NOTE: Several of the examples in this section show user input
mixed with the output displayed by Palm Debugger. In these
cases, the user input—the commands you type—is shown in

bol df ace.

Palm OS Programming Development Tools Guide 37

Using Palm Debugger
Palm Debugger Tips and Examples

Performing Calculations

You can type numeric expressions into the debugging window to
use it as a simple hexadecimal calculator. Here are several examples
of typing a numeric expression and the results displayed in the
debugging window.

Typed Expression Displayed Result

#20*4+3 $00000053 #83 #83 '...S
20*4+3 $83 #131 #-125 '.°
123+ff $0222 #546 #546 '."'

Shortcut Characters

Use the two shortcut characters to simplify your typing efforts: type
the period (.) character to specify the address value used for the
most recent command, or use the semicolon (:) character to specify
the starting address of the current routine.

Repeating Commands

You can repeat several of the debugging commands by pressing the
ENTER key repeatedly. For example, you can type the dmcommand
to display sixteen bytes of memory, and then press the ENTER key to
display the next sixteen bytes of memory. The s and t commands
also provide this capability.

Finding a Specific Function

A typical debugging problem is that you want to single step
through some problem code, but need to first find the code. This
section presents four different methods that you can use to find
code:

= Rebuild the application with a call to DogBr eak in the
problem routine.

= Use debugging commands to set an A-trap break on a system
call that the problem routine makes.

= Use the ft command to find the name of your routine.

38 Palm OS Programming Development Tools Guide

Using Palm Debugger
Palm Debugger Tips and Examples

= Use the source level debugging support to locate your
routine.

Rebuilding the Application

If you can rebuild the application that you are debugging, it is often
easiest to compile a DbgBr eak call into the problem routine. Palm
Debugger will break on the line containing that call.

Setting an A-trap Break

If you know that the problem routine makes a certain system call,
you can use debugging commands to set an a-trap break on that
call. The potential problem with this method is that other routines
might make the same system call, which means that you will get
false triggers.

For example, if you want to find your application’s main event loop,
you can use the following steps.

1. Setan a-trap break for the Evt Get Event system call, and
then tell Palm Debugger to go until it hits a break, as shown
here:

atb "evtgetevent”

A-trap set on 011d (evtgetevent)

g

Renot e stopped due to: A- TRAP BREAK EXCEPTI ON
" Evt Get Event'’

+$0000 10C3B1E2 *LINK A6, $0000 | 4E56 0000

When Palm Debugger breaks due to an a-trap break, the
current location is at the beginning of the system call. This
means that the return address on the stack is the function that
made the system call. In the above example, this will be your
application’s main event loop.

2. Set atemporary breakpoint at the function return address
that is currently on the stack. You can use the @operator to
fetch the long word at the stack pointer, as shown here:

gt @p

EXCEPTION | D = $80

' Event Loop'

+$0016 1001B2E6 *MOVE.L A2, - (A7) | 2FOA

Palm OS Programming Development Tools Guide 39

Using Palm Debugger
Palm Debugger Tips and Examples

The program counter is now at the instruction in your main
event loop that immediately follows the Evt Get Event call.

3. Disassemble your main event loop. You can use the colon
(:) symbol to easily grab the starting address of the current
routine.

il

' Event Loop 1001B2DO0'

+$0000 1001B2D0 LI NK A6, - $001C | 4E56 FFE4

+$0004 1001B2D4 MOVEM L D3- D4/ A2, - (A7) | 48E7 1820
+$0008 1001B2D8 LEA -$0018(A6), A2 | 45EE FFE8

+$000C 1001B2DC PEA $00000032 ; 00000032 | 4878 0032
+$0010 1001B2E0 MOVE.L A2, - (A7) | 2FO0A

+$0012 1001B2E2 _Evt Get Event ; $10C3BlE2 | 4E4F A11D
+$0016 1001B2E6 *MOVE.L A2, - (A7) | 2FOA

+$0018 1001B2E8 _SysHandl eEvent ; $10COE9EC | 4E4F AOA9
+$001C 1001B2EC ADD. W #$000C, A7 | DEFC 000C

+$0020 1001B2F0 TST.B DO | 4A00

Theat b,g,gt,andi | commands are described in detail in Chapter
2, “Palm Debugger Command Reference.”

Using the Find Text Command

Another method for finding a certain code routine is to search
through memory for the name of the routine. You can use Palm
Debugger’s f t command to search for text. This command takes
three arguments: the text to find, the starting address of the search,
and the number of bytes to search.

For example, to search through the first megabyte of RAM on a
Palm I11™, you can use the following command:

ft "Event Loop” 10000000 100000
dm 100005C4 ; 100005C4: 45 76 65 6E 74 4C 6F 6F 70 63 61 74 69
6F 6E 00 "EventLoop...... "

NOTE: RAM starts at address 0x10000000 in all current Palm
handheld devices except for the Palm V™. RAM starts at address
0 on the Palm V.

To search ROM instead, use address 0x10C00000.

40 Palm OS Programming Development Tools Guide

Using Palm Debugger
Palm Debugger Tips and Examples

You can repeat the find, starting from the current location, by
pressing the ENTER key.

dm 1001B355 ; 1001B355: 45 76 65 6E 74 4C 6F 6F 70 00 00 4E 56
00 00 2F "EventLoop..NV../"

You can ensure that the routine you’ve found is the one you want by
disassembling the current routine with the i I command and
searching through the routine with the f t command.

NOTE: When you use the ft command, the first instance of the
search string is actually a copy of the search string the debugger
nub is using. You must search a second time to find the first
“actual” instance of the text string.

Using the Source Level Debugging Support

If you have built your application with the gcc compiler and
generated a symbol file, you can find your code by following these
steps:

1. Launch the console nub on the handheld device, as described
in “Activating Console Input” on page 122.

2. Open your symbols file. You can use the Open Symbol File
command from Palm Debugger’s Source menu.

3. After the symbol file has loaded, choose the Break command
from the Source menu to break into the debugger nub on the
device.

4. In the source windowv, select the source line of the routine
you want to debug.

5. Select Toggle Breakpoint from the Source menu to set the
breakpoint.

Finding Memory Corruption Problems

As anyone who has tried knows, finding the routine that is trashing
memory can be a very frustrating task. A memory bug can trash the
low memory global variables used by the system, the dynamic
memory heap, or an application variable, any of which can cause

Palm OS Programming Development Tools Guide 41

Using Palm Debugger
Palm Debugger Tips and Examples

unpredictable behavior. This section provides tips for tracking
down two kinds of memory bugs:

= heap corruptions
= application variable corruption

Tracking Down Heap Corruption

If you suspect a corrupted heap, check the heap. You can perform a
fast check of the heap with the hchk command, which verifies the
validity of the heap. For example:

hchk 0
Heap OK

You can also use the hd 0 command to display a dump of the
dynamic heap. If the heap is in a valid state, the heap dump will
complete and you will see the heap summary displayed at the
bottom of the window. For example:

hd 0
Di spl ayi ng Heap I D: 0000, napped to 00001480
req act resType/
#resl D/
start handl e localID size size |lck own flags type index attr ctg

uni quel D nane

-00001534 00001494 F0001495 000456 00045E #0 #0 fMGaffiti Private

- 00001992 00001498 F0001499 000012 00001A #0 #0 fM Dat aMgr Protect List
(DrProtect EntryPtr*)

- 000019AC 00001490 F0001491 O0001E 000026 #0 #0 fM Al arm Tabl e
-000019D2 0000148C F000148D 000038 000040 #0 #0 fM

*00001A12 0000149C F000149D 000396 00039E #2 #1 fMForm "3:03 pnt
*00001DB0 000014A0 FO0014A1 00049A 0004A2 #2 #0 fM

00002252 -------- F0002252 00002E 00003E #0 #0 FM
00002290 -------- F0002290 OOEC40 OOEC50 #0 #0 FM
-00010EEQ -------- FOO10EEO 000600 000608 #0 #15 fM Stack: Consol e Task
000114E8 -------- FOO114E8 OOOFF8 001008 #0 #0 FM
-000124F0 -------- FO00124F0 001000 001008 #0 #15 fM
-00017D30 -------- FO0017D30 00003C 000044 #0 #15 fM SysAppl nfoPtr: AWMX

42 Palm OS Programming Development Tools Guide

Using Palm Debugger
Palm Debugger Tips and Examples

-00017D74 --------
(Ftrd obal sType)
-00017D84 --------
3.0.2

-00017DBO --------
3.0. 2

-00017DC6 --------
3.0. 2

-00017FC2 --------
' GeUpdat e 3.0.2'
-00017FEE --------
3.0. 2

Heap Summary:

FO017D74 000008 000010 #0 #15 f M Feat ure Manager d obal s
FO017D84 000024 00002C #0 #15 f M DmOpenl nfoPtr: ' Update
FO017DBO OOOOOE 000016 #0 #15 f M DmOpenRef: ' Updat e
FO017DC6 0001F4 0001FC #0 #15 f M Handl e Tabl e: ' OcUpdat e
FO017FC2 000024 00002C #0 #15 f M DmOpenl nf oPt r:

FOO17FEE OOOOOE 000016 #0 #15 f M DnOpenRef: ' GcUpdat e

fl ags: 8000

si ze: 016B80

numrHandl es: #40

Free Chunks: #14 (010C50 byt es)
Movabl e Chunks: #51 (O05E80 byt es)
Non- Movabl e Chunks: #0 (000000 byt es)

If you break into the debugger nub at various points during the
execution of your application and check the heap, you can narrow
down where the corruption is occurring in your code.

Another method for tracking down heap corruption is to use the
ndebug command, which puts the handheld device into one of
several heap checking modes. Once a heap-checking mode has been
activated on the device, the Palm OS performs an automatic heap
check and verification after each call to the Memory Manager. If the
heap is corrupted, the system automatically breaks into the
debugger. The following is an example of the ndebug command:

ndebug -parti al

Current node = 001A

Only Affected heap checked/ scranbl ed per call
Heap(s) checked on EVERY Mem cal |

Heap(s) scranbl ed on EVERY Mem cal |

Free chunk contents filled & checked

M ni mum dynam ¢ heap free space recording OFF

Note that the memory checking modes can seriously degenerate the
performance of an application. You can enable or disable various

Palm OS Programming Development Tools Guide 43

Using Palm Debugger
Palm Debugger Tips and Examples

ndebug options to strike a balance between performance and
debugging information. For more information, see “mdebug” on
page 156.

The hd, hchk, and ndebug commands are described in detail in
Chapter 2, “Palm Debugger Command Reference.”

Tracking Down Global Variable Corruption

When you have a bug that is trashing a system or application global,
you must first determine which address in memory is being
corrupted. Once you know that address, you can use the Step-Spy
(ss) command to watch the address. The ss command puts the
processor into single-step mode and automatically checks the
contents of a specified address after each instruction. If the
instruction causes the contents of the address the change, the
debugger breaks. For example:

ss 100
Step Spying on address: 00000100

Note that the ss command is single-stepping through instructions,
and thus the handheld device runs slowly. Ideally, you can narrow
down the range of code involved with the corruption and use this
command to watch the execution of this code section.

Displaying Local Variables and Function
Parameters

If you are debugging with the source window, the current function’s
local variables and parameters are displayed in the upper pane of
the window. However, if you do not have access to symbol
information, you need to use debugging commands to manually
look up the variable values. This section describes the steps you
need to take to look up values for a typical function, which is shown

in Listing 1.4

44 Palm OS Programming Development Tools Guide

Using Palm Debugger
Palm Debugger Tips and Examples

Listing 1.4 An Example Function for Viewing Local Variables
and Parameters

static Bool ean
Mai nFr mEvent Handl er (Event Ptr event P)

{

For mPt r f or nP;

Bool ean handl ed = fal se;
Err err;

char buf fer[64];

Ul nt 32 nunByt es=0;

Int16 i

static char prevChar = 0;

/1 See if StdlO can handle it
i f (StdHandl eEvent (eventP)) return true;

/1 body of function onitted for clarity

return fal se;

If you break into the debugger and disassemble the code at the
beginning of this function, just before it calls the St dHandl eEvent
function, this is what you see:

il o

" Mai nFr nEvent Handl er 1001E296'

+$0000 1001E296 LINK A6, - $0048| 4E56 FFB8

+$0004 1001E29A MOVEM L D3- D5/ A2, - (A7)| 48E7 1C20

+$0008 1001E29E MOVE. L $0008(A6), A2| 246E 0008

+$000C 1001E2A2 CLR B D5| 4205

+$000E 1001E2A4 CLR L -30044(A6)| 42AE FFBC

+$0012 1001E2A8 *MOVE. L A2,-(A7)| 2F0A

+$0014 1001E2AA BSR W St dHandl eEvent ; 1001F214| 6100 OF68
+$0018 1001E2AE ADDQ W #$04, A7| 584F

+$001A 1001E2BO0 TST.B DO| 4A00

+$001C 1001E2B2 BEQ S Mai nFr nEvent Handl er +$0024 ; 1001E2BA |
6706

The first Ul nt 32 on the stack upon function entry is the return
address for the function. Immediately following that are the
parameter values, from left to right. In the listing above, if you

Palm OS Programming Development Tools Guide 45

Using Palm Debugger
Palm Debugger Tips and Examples

display the memory pointed to by the stack pointer at the beginning
of the function, you see the following:

dm sp
00014A2A: 10 C4 77 00 00 01 4A 4E 00 01 4A 4E 00 01 51 OE
".ow..JIN.JIN . Q'

The first Ul nt 32 (0x10C47700) is the return address of the
function.

The second Ul nt 32 (0x00014A4E) is the value of the function’s
event P parameter.

After the LINK instruction executes however, the stack pointer
register is changed: the stack pointer is decremented to make room
for a saved value of the A6 register and for local variables; in this
example, there are 0x48 bytes of local variables.

After the LINK instruction executes, the A6 register is changed to
point to the beginning of the functions’ stack frame. This register is
used by the function to access parameters and local variables. The
following shows what the stack looks like after the LINK instruction
executes:

Address : Contents

A7 => 149CE <= new "top" of stack
: <= 0x48 bytes of loca
vari abl es
A6 => 14A26 : 00 01 4A 3A <= saved val ue of A6
14A2A : 10 C4 77 00 <= return address

14A2E : 00 01 4A 4E <= eventP paraneter

If you display the memory referenced by register A6 at this time,
you see the following:

dm a6
00014A26: 00 01 4A 3A 10 C4 77 00 00 01 4A 4E
00 01 4A 4E "..J:..w. ..JN .JN

The first Ul nt 32 pointed to by A6 is the old value of A6, the next
Ul nt 32 is the return address of the routine, and following that are
the function parameter values. This means that the first parameter
to the function can always be found at 8(A6) .

46 Palm OS Programming Development Tools Guide

Using Palm Debugger
Palm Debugger Tips and Examples

Any local variables belonging to the function are stored in memory
locations preceding A6. In the above example, the nunByt es local
variable is located at - $0044(A6) . Once you know the offset of the
variable, you can access by using an offset from the A6 register;
thus, you can use the following command to view the nunByt es
parameter:

dm - 44+a6
000149E2: 00 00 00 00 00 00 1A OC 20 00 20 04
00 01 4A 08 "........ RN I

Changing the Baud Rate Used by Palm
Debugger

Both the debugger and console nubs on the handheld device always
start communicating at 57,600 baud. You can change this baud rate
by selecting a new speed from Palm Debugger’s Communications
menu.

If you are using a serial cable that does not include hardware
handshaking lines, you might need to switch to a lower baud rate.
And if you are downloading a large file to the handheld device, you
might want to switch higher baud rate. Palm Debugger lets you set
the baud rate to values ranging from 2400 baud to 230,400 baud.

When you choose a new baud rate, Palm Debugger sends a request
packet to the nub on the handheld device to change its baud rate,
and then Palm Debugger changes its own baud rate. If Palm
Debugger is attached to the debugger nub on the device, the request
goes to the debugger nub; otherwise, the request goes to the console
nub.

In either case, changing the baud rate of either nub on the handheld
device changes the baud rate of both nubs.

NOTE: The new baud rate is only in effect until you soft reset
the handheld device.

Palm OS Programming Development Tools Guide 47

Using Palm Debugger
Palm Debugger Tips and Examples

Debugging Applications That Use the Serial
Port

Although it is very difficult to debug an application that uses the
serial port, you can still use a limited set of debugging functions.
You cannot use the console nub while an application on the
handheld device is using the serial port.

When you do enter the debugger nub on the handheld device while
debugging a serial application, the debugger sends data over the
serial port and probably disrupts the application’s communications.
At that point, you can switch the serial cable back over to Palm
Debugger, double-check your baud rate setting, attach to the device
with the at t command, and perform *“post-mortem” analysis of the
problem.

Making Sure the Baud Rates Match

If the debugger nub on the handheld device has already been
entered at least once, and you later launch a handheld application
that opens the serial port, that application might change the port
speed. The debugger nub will then use the new baud rate, but you
will need to manually change the baud rate that Palm Debugger is
using for communications to work. Use Palm Debugger’s
Communications menu to change the speed.

Importing System Extensions and Libraries

You can use the console window i nport command to copy a new
database or replace an existing database on the handheld device.
However, the i mport command cannot replace a database that is
currently opened.

If you are developing a system extension or shared library and need
to use the i nport command, you need to do some extra work. This
is due to the fact that system extension databases and shared
libraries are generally either opened or marked as protected. To
import a newer version of a system extension database or shared
library, you have to make sure that the old database has been closed
and is not protected; otherwise, the i mport command generates the
following message:

###Er r or $00000219 occurred

48 Palm OS Programming Development Tools Guide

Using Palm Debugger
Palm Debugger Tips and Examples

To get around this problem, you need to perform a soft reset on the
handheld device and tell the Palm OS to not automatically load
system extensions or shared libraries. To do so, follow these steps:

1. Press the Up button on the handheld device while pressing
the reset button on the back of the device with a paper clip or
similar blunt object. This tells the Palm OS on the device to
not load the system extension databases and shared libraries.

Start the console nub on the handheld device.

Import your system extension or shared library with the
i mport command.

4. Perform another soft reset on the device, and the system will
use the new version of the extension or library.

Determining the Current Location Within an
Application

You can use one of the following three methods to determine where
you are in your code:

1. Disassemble code starting at the beginning of the current
routine, using the following command:

il

' Event Loop 1001B2D0O’

+$0000 1001B2D0 LINK A6, - $001C | 4E56 FFE4

+$0004 1001B2D4 MOVEM L D3-D4/ A2, - (A7) | 48E7 1820
+$0008 1001B2D8 LEA -$0018(A6), A2 | 45EE FFE8

+$000C 1001B2DC PEA $00000032 ; 00000032 | 4878 0032
+$0010 1001B2EO0 MOVE.L A2,-(A7) | 2FOA

+$0012 1001B2E2 _Evt Get Event ; $10C3B1E2 | 4E4F Al11lD
+$0016 1001B2E6 *MOVE.L A2, - (A7) | 2FOA

+$0018 1001B2E8 _SysHandl eEvent ; $10CO0E9EC | 4E4F AOA9
+$001C 1001B2EC ADD. W #3$000C, A7 | DEFC 000C

+$0020 1001B2F0 TST.B DO | 4A00

2. Perform a stack crawl with the sc command, which displays
the oldest routine at the top and the newest at the bottom.
For example:

sc

Cal ling chain using A6 Links:

A6 Frame Call er

00000000 10C68982 cjt kend+0000
00015086 10C6CA26 __ Startup__+0060

Palm OS Programming Development Tools Guide 49

Using Palm Debugger
Palm Debugger Tips and Examples

00015066 10C6CCCE Pi |l ot Mai n+0250

00014FC2 10COF808 SysAppLaunch+0458
00014F6E 10C10258 PrvCal | Wt hNewSt ack+0016
0001491E 1001CC7E st art +006E

000148E6 1001CF44 Pil ot Mai n+001C

3. Getalist of the currently opened databases. Your application
should be one of the listed databases. Note that the Syst em
and Graf fiti Short Cut s databases are always opened by
the system, and will appear at the bottom of the list. Use the
opened command as follows:

opened

nanme resDB car dNum accessP ID openCnt node
Launcher DB no 0 00015146 0001814F 1 0003
*Launcher yes 0 00016DD2 0OD1FA98 1 0001
*Graffiti ShortCuts yes 0 00017D5C OO1FFE7F 1 0007
*System yes 0 00017FEE 00D20A44 1 0005

Total : 4 databases opened

50 Palm OS Programming Development Tools Guide

Palm Debugger
Command
Reference

This chapter describes Palm Debugger commands. For an
introduction to using Palm Debugger, see Chapter 1, “Using Palm

Debugger.”

This chapter begins with a description of the syntax used to describe
commands, and then expands into the following sections:

* “Debugging Window Commands” on page 53 provides a
reference description for each command that you can use in
the debugging window to communicate with the debugger
nub running on the handheld device. The command
reference listings are ordered alphabetically.

« “Debugging Command Summary” on page 85 provides
tables that summarize the debugging commands by
category.

Command Syntax

This chapter uses the following syntax to specify the format of
debugger commands:

commandNane <par aneter> [options]
commandNanme The name of the command.

par anet er Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by
the | character.

Palm OS Programming Development Tools Guide 51

Palm Debugger Command Reference

Command Syntax

options Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window
and with the backslash (\) character in the
debugging window.

NOTE: Any portion of a command that is shown enclosed in
square brackets (“[” and “]”) is optional.

The following is an example of a command definition

dir (<cardNune| <srchOptions>) [displayOptions]
The di r command takes either a card number of a search
specification, followed by display options.

Here are two examples of the di r command sent from the console
window:

dir 0 -a
dir -t rsrc

And here are the same two commands sent from the debugging
window:

dir O \a
dir \t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash (in the console window) or backslash
(in the debugging window). For example:

-C
-enabl e
\ enabl e

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\tenmp\nyLogFil e

\t Rsrc

52 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Specifying Numeric and Address Values

Many of the debugging commands take address or numeric
arguments. You can specify these values in hexadecimal, decimal, or
binary. All values are assumed to be hexadecimal unless preceded
by a sign that specifies decimal (#) or binary (%). Table 2.1 shows
values specified as binary, decimal, and hexadecimal in a debugging
command:

Table 2.1 Specifying numeric values in Palm Debugger

Hex value Decimal value Binary value
64 or $64 #100 2901100100
F5 or $F5 #245 941110101
100 or $100 #256 9400000000

For more information, see “Specifying Constants” on page 17.

Using the Expression Language

When you send commands from the debugging window to the
debugger nub on the handheld device, you can use Palm
Debugger’s expression language to specify the command
arguments. This language is described in “Using Debugger

Expressions” on page 17.

Debugging Window Commands

You use Palm Debugger’s debugging window to send commands to
the debugger nub that is running on the handheld device.

NOTE: You can use Palm Debugger’s expression language to
specify arguments to debugging window commands. The
expression language is described in “Using Debugger

Expressions” on page 17.

Palm OS Programming Development Tools Guide 53

Palm Debugger Command Reference
Debugging Window Commands

This section provides a description of all of the commands in
alphabetical order. For convenience, the commands are categorized
here:

Table 2.2 Debugging window command categories

Category Commands

Console cardi nfo,dir, hchk, hd, hl, ht,info,opened,storeinfo

Flow Control att,atb,atc,atd,br,brc,brd,cl,dx,g,gt,s,sst,reset

Memory atr,db,dl ,dmdw fb,fill,fl, ft,fwil,sb,sc,sc6,sc7,sl,

sw, wh

Miscellaneous hel p, penv

Register reg

Template >, sizeof ,tenpl at es, typedef ,t ypeend

Utility alias,aliases,bootstrap, keywords,| oad, run, save, var,

vari abl es
>
Purpose Defines a structure field.
Usage > <typeNane> <“fi el dNane” >
Parameters typeNanme The type of the field.
fi el dName The quoted name of the field in the template.
Comments Use the > command in conjunction with the t ypedef andt ypeend
commands to defined structure templates that you can use to
display complex structures with a single memory display (dn)
command.
Exanuﬂe t ypedef struct “Point Type”

> SWword “X’
> SWword “Y”
t ypeend

54 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Purpose

Usage

Parameters

Comments

Example

Purpose
Usage
Parameters

Example

Purpose

Usage

Parameters

alias
Defines or displays an alias.

alias <*nane”>
alias <*nane”> <“definition”>

name The quoted name of the alias.

definition The quoted definitional text for the alias.

Use the al i as command to define an alias for a command or group
of commands.

If you provide only the name of an alias, this command displays the
definition for that name.

alias “Is” “dir”

aliases

Displays the names of all defined aliases.
al i ases

None.

al i ases
I's

atb
Adds an A-Trap break.

atb (<“funcName”> |
([1i bRef Nunms |

<t r apNun®)
<“l'i bNanme” >])

f uncNanme The quoted name of the function.

trapNum The A-Trap number.

Palm OS Programming Development Tools Guide 55

Palm Debugger Command Reference
Debugging Window Commands

Purpose

Usage

Parameters

Purpose
Usage

Parameters

Purpose
Usage

Parameters

I i bRef Num Optional. the reference number for the library
in which the function resides.

I i bName Optional. The quoted name of the library in
which the function resides.

atc
Clears an A-Trap break.

atc (<“funcNanme”> | <trapNunp)
([1i bRef Nun» | <“libNane”>])

f uncName The quoted name of the function.
trapNum The A-Trap number.
I i bRef Num Optional. the reference number for the library

in which the function resides.

I i bNane Optional. The quoted name of the library in
which the function resides.

atd
Displays a list of all the A-Trap breaks currently set.
atd

None.

atr
Registers a function name with an A-Trap number.
atr <“funcNane”> <trapNunp [<"li bNane” >]

f uncNane The quoted name of the function.
t rapNum The A-Trap number.

56 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage

Parameters

Example

I i bNane Optional. The quoted name of the library in
which the function resides.

att
Attach to the handheld device.
att [options]

opti ons You can optionally specify the following
options:

\ async
Attach asynchronously.

att
EXCEPTION I D = $A
+$0512 10COEEFE *MOVEQ L #$01, D0 | 7001

NOTE: The att command will not connect Palm Debugger to
Palm OS Simulator. Instead, you should connect from Palm OS
Simulator to Palm Debugger by either:

- Entering “shortcut . 1” as described in “Using Shortcut Numbers
to Activate the Windows” on page 6 from Palm OS Simulator.

- Entering CTRL+PAUSE (or CTRL+ATTN) from Palm OS Simulator.

Either of these methods will cause Palm OS Simulator to enter
debug mode. Next, use the PalmDebugger command g to resume
debugging.

Palm OS Programming Development Tools Guide 57

Palm Debugger Command Reference
Debugging Window Commands

Purpose

Usage

Parameters

Purpose
Usage

Parameters

Purpose

Usage

Parameters

bootstrap

Loads a ROM image into memory on the handheld device, using the
bootstrap mode of the processor.

bootstrap <“*hwinitFi |l eNane”> <“ronFi | eNane” >
[opti ons]

hwi ni t Fi | eNane The quoted name of the hardware initialization

file on your desktop computer.

ronfi | eNane The quoted name of the ROM image file on
your desktop computer.

options You can optionally specify the following
options:
\' sl ow

br

Sets a breakpoint at the specified address.

br [options] <addr>

options Optional. You can specify the following option:
\toggle
Toggles the breakpoint on or off.
addr The memory address at which to set the
breakpoint.
brc

Clears a breakpoint or all breakpoints.

brc
brc <addr>

addr A memory address.

58 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Comments

Purpose
Usage

Parameters

Purpose

Usage

Parameters

Comments

Example

Use the br command to clear a specific breakpoint or to clear all
breakpoints. if you specify a valid address value, that breakpoint is
cleared. If you do not specify any address value, all breakpoints are
cleared.

NOTE: The cl and br c commands are identical.

brd

Displays a list of all of the breakpoints that are currently set.
brd

None.

cardinfo
Retrieves information about a memory card.
cardi nfo <car dNun®

car dNum The number of the card for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

You can use the car di nf o command in either the Console window
or the debugging window.

cardinfo O

Name: Pal nCard

Manuf: Palm Inc

Versi on: 0001
CreationDate: B1243780
ROM Si ze: 00118FFC
RAM Si ze: 00200000
Free Bytes : 0015ACB2
Nunber of heaps: #3

Palm OS Programming Development Tools Guide 59

Palm Debugger Command Reference
Debugging Window Commands

Purpose

Usage

Parameters

Comments

Purpose
Usage
Parameters

Example

Purpose
Usage

Parameters

cl

Clears a breakpoint or all breakpoints.

cl
cl <addr>
addr A memory address.

Use the cl command to clear a specific breakpoint or to clear all
breakpoints. if you specify a valid address value, that breakpoint is
cleared. If you do not specify any address value, all breakpoints are
cleared.

NOTE: The cl and br c commands are identical.

db
Displays the byte value at a specified address.
db <addr>
addr

A memory address.

db 0100
Byte at 00000100 = $01 #1 #1

dir
Displays a list of the databases on the handheld device.
dir (<cardNump| <searchOptions>) [<displayOpti ons>]

car dNum The card number whose databases you want

listed. You almost always use 0 to specify the
built-in RAM.

60 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Comments

searchOpti ons

di spl ayOpti ons

Optional. Options for listing a specific
database. Specify any combination of the
following flags.

\c <creatorl D>
Search for a database by creator ID.

\ | at est
List only the latest version of each
database.

\'t <typel D>

Search for a database by its type.

Optional. Options for which information is
displayed in the listing. Specify any
combination of the following flags.

\a Show all information.
\at Show the database attributes.

\d Show the database creation,
modification, and backup dates.

\i Show the database applnfo and sortinfo
field values.

\id Show the database chunk ID

\'s Show the database size

\'m Show the database modification number.
\n Show the database name.

\'r Show the number of records in the
database.

\'tc Show the database type ID and creator
ID.

\v Show the database version number.

Use the di r command to display a list of the databases on a specific
card or in the handheld device built-in RAM. You typically use the
following command to list all of the databases stored in RAM on the

handheld device:

Palm OS Programming Development Tools Guide 61

Palm Debugger Command Reference
Debugging Window Commands

Example

*System
* AVX
*Ul AppShel |
* PADHTAL Li brary
*|rDA Library
Mai | DB
Net wor kDB

dir O

Or use the -a switch to display all of the information for each
database:

dir 0 -a

NOTE: You can use the di r command in either the Console
window or the debugging window. However, the command
options must be prefaced with the “\” character in the debugging
window, rather than with the “-” character that you use in the
console window version.

00D20A44 392.691 Kb 390.361 Kb
00D209C4 20. 275 Kb 20.123 Kb
00D20944 1.327 Kb 1.175 Kb
00D208E2 7.772 Kb 7.674 Kb
00D20876 39.518 Kb 39. 402 Kb

0001817F 1.033 Kb 0.929 Kb
0001818B 0.986 Kb 0.722 Kb

System M DI Sounds 000181B3 1.066 Kb 0.842 Kb

Dat ebookDB

Purpose
Usage
Parameters

Example

000181FB 0. 084 Kb 0. 000 Kb

dl

Displays the 32-bit long value at a specified address.
dl <addr>

addr A memory address.

dl 0100
Long at 00000100 = $01010000 #16842752 #16842752 '....'

62 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage

Parameters

Comments

Example

Purpose
Usage

Parameters

Comments

dm
Displays memory for a specified number of bytes or templates.

dm <addr > [<count >] [<tenpl ate>]

addr A memory address.

count Optional. The number of bytes to display.

tenpl at e. The name of the structure template to use. This
defines how much memory to display and how
to display it.

Use the dmcommand to display a range of memory values. You can
specify a byte count or a structure template; if you do not specify
either, dmdisplays sixteen bytes of memory.

dm 0100 8
00000100: 01 01 00 00 02 BO 00 O1

dump
Dumps memory to a file.

dunp <“fil enane”> <addr> <nunBytes>

filenanme The quoted name of the file to which the data is
to be written.

addr A memory address.

nunByt es The number of bytes of memory to write to the
file.

Use the dunp command to write a dump of a range of memory
addresses to file.

Palm OS Programming Development Tools Guide 63

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage
Parameters

Example

Purpose

Parameters

Purpose
Usage

Parameters

Comments

Example

dw

Displays the 16-bit word value at a specified address.
dw <addr >

addr A memory address.

dw 0100
Word at 00000100 = $0101 #257 #257

dx
Enables or disables DbgBr eak() breaks.
dx

None.

fb

Searches through a range of memory for a specified byte value.

fb <val ue> <addr> <nunBytes> [fl ags]

val ue The byte value to find.
addr The address at which to start the search.
nunByt es The number of bytes to search.
fl ags Optional. You can specify the following flags:
\a Find all occurrences within the specified
range.
\i Use caseless comparison.

By default, f b uses a case sensitive comparison.

fb ff 0100 200

64 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage

Parameters

Example

Purpose

Usage

Parameters

Comments

Example

dm 00000110 ;00000110: FF 00 00 00 03 18 00 00 03 BC 00
01 7D 72 00 O1 “............ br.o.”

fill

Fills memory with a specified byte value.

fill <addr> <nunByt es> <val ue>

addr A memory address.

nunByt es The number of bytes to fill with the value.
val ue The value assigned to each byte.

fill 0100 8 FF

fl

Searches through a range of memory for a specified 32-bit long
value.

fb <val ue> <addr> <nunBytes> [fl ags]

val ue The byte value to find.
addr The address at which to start the search.
nunByt es The number of bytes to search.
fl ags Optional. You can specify the following flags:
\a Find all occurrences within the specified
range.
\i Use caseless comparison.

By default, f | uses a case sensitive comparison.

fl ffff 0 1000

dm 00000034 ; 00000034: FF FF 00 00 FF FF 00 00 FF FF 00
00 FF FF 00 0O e "

Palm OS Programming Development Tools Guide 65

Palm Debugger Command Reference
Debugging Window Commands

ft

Purpose Searches through a range of memory for the specified text.

Usage ft <text> <addr> <nunBytes> [fl ags]

Parameters text The quoted text to find.
addr The address at which to start the search.
nunByt es The number of bytes to search.
fl ags Optional. You can specify the following flags:
\a Find all occurrences within the specified
range.
\i Use caseless comparison.

Comments By default, f t uses a case sensitive comparison.

Example ft “abc” 0 1000

dm 000005C4 ; 000005C4: 61 62 63 27 00 00 OO OO 00 O1 4B
06 00 00 O

fw

Purpose Searches through a range of memory for the specified 16-bit word
value.

Usage fw <val ue> <addr> <nunBytes> [fl ags]

Parameters val ue The value to find.
addr The address at which to start the search.
nunByt es The number of bytes to search.
fl ags Optional. You can specify the following flags:
\a Find all occurrences within the specified
range.
\i Use caseless comparison.

66 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Comments

Example

Purpose

Usage

Parameters

Comments

Example

Purpose

Parameters

By default, f wuses a case sensitive comparison.

fw 32000 0 1000

dm 00000258 ; 00000258: 00 20 00 00 00 07 A7 OE 00 00 0O
01 00 00 00 OO T "

g

Continues execution.

g
g <addr>

addr Optional. The address from which to continue
execution.

You can optionally specify a starting address for the g command. If
you do not specify an address, execution continues from the current
program counter location.

gt

Sets a temporary breakpoint at the specified address, and resumes
execution from the current program counter.

gt <addr>
addr The address at which to set the breakpoint. If

you do not specify an address, the current
program counter location is used.

Palm OS Programming Development Tools Guide 67

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage

Parameters

Comments

Example

Purpose

Usage

Parameters

Comments

Example

hchk

Checks the integrity of a heap.
hchk <heapl d> [opti ons]

heapl d The hexadecimal number of the heap whose
contents are to be checked. Heap number
0x0000 is always the dynamic heap.

options Optional. You can specify the following option:
\c Check the contents of each chunk.

NOTE: You can use the hchk command in either the Console
window or the debugging window. However, the command
options must be prefaced with the “\” character in the debugging
window, rather than with the “-” character that you use in the
console window version.

hchk 0000
Heap OK

hd

Displays a hexadecimal dump of the specified heap.

hd <heapl d>

heapl d The hexadecimal number of the heap whose
contents are to be displayed. Heap number
0x0000 is always the dynamic heap.

Use the hd command to display a dump of the contents of a specific

heap from the handheld device. You can use the hl_ command to

display the heap IDs.

hd 0

68 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference

Debugging Window Commands

Di spl ayi ng Heap ID: 0000, napped to 00001480

#resl D/
start handl e
uni quel D nane

| ocal I D

req act

si ze si ze

I ck own flags type

resType/

i ndex attr ctg

-00001534 00001494 F0001495
-00001992 00001498 F0001499
(DnProtectEntryPtr*)

- 000019AC 00001490 F0001491
-000019D2 0000148C F000148D
*00001A12 0000149C F000149D

000456
000012

00045E
00001A

00001E
000038
000396
00049A
00002E
OOEC40
000600

000026
000040
00039E
0004A2
00003E
OOEC50
000608

FO0114E8 OOOFF8 001008

001000 001008
00003C 000044
000008 000010
000024 00002C
00000E 000016
0001F4 0001FC
000024 00002C

00000E 000016

#0
#0

#0
#0
#2
#2
#0
#0
#0

#0
#0
#0
#0
#0
#0
#0
#0

#0

#0
#0

#0
#0
#1
#0
#0
#0
#15

#0

#15
#15
#15
#15
#15
#15
#15

#15

fMGaffit
f M Dat aMgr

Private
Protect List
fM Al arm Tabl e
fM
fM Form “3: 03 pni
fM
FM
FM
fM St ack: Consol e Task

FM

fM

f M SysAppl nfoPtr: AW

f M Feature Manager d obal s

f M DnOpenl nfoPtr: ' Update

f M DmOpenRef :

f M Handl e Tabl e: ' GcUpdat e

" Updat e

f M DmOpenl nf oPt r

f M DmpenRef : ' G8Updat e

*00001DB0 000014A0 F00014A1
00002252 -------- F0002252
00002290 -------- F0002290

-00010EEQ -------- FOO10EEO

000114E8 --------

-000124F0 -------- F00124F0

-00017D30 -------- F0017D30

-00017D74 -------- F0017D74

(Ftrd obal sType)

-00017D84 -------- F0017D84

3.0.2

-00017DBO -------- F0017DB0O

3.0.2

-00017DC6 -------- F0017DC6

3.0.2

-00017FC2 -------- FOO17FC2

" GoUpdate 3.0.2'

-00017FEE -------- FOO017FEE

3.0.2

Heap Summary:

fl ags: 8000
si ze: 016B80
nunmHandl es: #40
Free Chunks: #14
Movabl e Chunks: #51
Non- Movabl e Chunks: #0

(010C50 byt es)
(005E80 byt es)
(000000 bytes)

Palm OS Programming Development Tools Guide 69

Palm Debugger Command Reference
Debugging Window Commands

Purpose

Usage

Parameters

Comments

Example

Purpose
Usage

Parameters

Comments

help
Displays a list of commands or help for a specific command.

hel p

hel p <command>
"

? <conmand>

conmmand The name of the command for which you want
help displayed.

You can use the hel p command in either the Console window or
the debugging window.

hel p hchk

Do a Heap Check.
Synt ax: hchk <hex heapl D> [options...]
-C : Check contents of each chunk

hi

Displays a list of memory heaps.
hl <car dNunp

car dNum The card number on which the heaps are
located. You almost always use 0 to specify the
built-in RAM.

Use the hl command to list the memory heaps in built-in RAM or
on acard.

You can use the hl command in either the Console window or the
debugging window.

70 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Example hl 0

i ndex heapl D heapPtr si ze free maxFree flags
0 0000 00001480 00016B80 00010C50 OOOOECA8 8000
1 0001 1001810E O01E7EF2 0014AD6A 00147D3A 8000
2 0002 10008212 00118DEE 0000A01C 0000A014 8001
ht

Purpose Displays summary information for the specified heap.
Usage ht O
Parameters None.

Comments The ht commands displays the summary information that is also
shown at the end of a heap dump generated by the hd command.

You can use the ht command in either the Console window or the
debugging window.

Example ht 0000
Di spl ayi ng Heap I D: 0000, napped to 00001480

Heap Sunmary:

fl ags: 8000

si ze: 016B80

numHandl es: #40

Free Chunks: #14 (010CAA byt es)
Movabl e Chunks: #48 (O05E26 byt es)
Non- Movabl e Chunks: #0 (000000 byt es)

Purpose Disassembles code in a specified line range.

Usage il [<addr> | <*funcNane”> [lineCount]]
Parameters addr Optional. The starting address at which to
disassemble.

Palm OS Programming Development Tools Guide 71

Palm Debugger Command Reference

Debugging Window Commands

f uncName

| i neCount

Optional. The name of the function whose code
you want disassembled.

Optional. If you provide a value for addr, you
can also specify the number of lines of code to
disassemble starting at addr.

Comments Usethei |l command to disassemble code. If you do not provide a
function name or starting address value, disassembly begins at the
current program counter value.

Example il 0100
00000100 BTST Do, D1 | 0101
00000102 ORI.B #$B0, DO ; '.' | 0000 02BO
00000106 ORI.B #$30,D1 ; 'O | 0001 7830
0000010A ORI.B #$01, DO ; | 0000 0001
0000010E | 474A
00000110 CoProc | FFOO 0000 0318
00000116 ORI.B #$BC, DO ; | 0000 03BC
0000011A ORI.B #$72,D1 ; 'r’ | 0001 7D72
0000011E ORI.B #$BC, D1 ; '.' | 0001 6FBC
00000122 ORI.B #$22, D0 ; | 0000 0722

info

Purpose Displays information about a memory chunk.

Usage info (<hexChunkPtr> | | ocallD>) [options]
Parameters hexChunkPtr or locallD

options

A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

Optional. You can specify the following
options:

- card <car dNune
The card number if a local ID is specified
instead of a chunk pointer.

72 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Comments NOTE: You can use thei nf o command in either the Console
window or the debugging window. However, the command
options must be prefaced with the “\” character in the debugging
window, rather than with the “-” character that you use in the
console window version.

keywords
Purpose Lists all debugger keywords.
Usage keywords
Parameters None.

Example keywords

t

g

SR
PC
SP
A7
A6
A5
A4
A3
A2
Al
A0
D7

load
Purpose Loads the data fork of a file at the specified address.
Usage |oad <“fil eNane”> <addr>

Parameters fil eNane The quoted name of the file whose data fork
you want loaded.

Palm OS Programming Development Tools Guide 73

Palm Debugger Command Reference
Debugging Window Commands

addr The memory address at which you want the
data fork loaded.

opened
Purpose Lists all of the currently opened databases.
Usage opened
Parameters None.

Comments You can use the opened command in either the Console window or
the debugging window.

Example opened

nanme resbB cardNum accessP I D openCnt node
*Graffiti ShortCuts vyes 0 00017D5C OO1FFE7F 1 0007
*System yes 0 O0O0017FEE 00D20A44 1 0005

Total : 2 databases opened

penv
Purpose Displays current environment information for the debugger.
Usage penv
Parameters None.

Comments The penv command displays the current values of the predefined
debugger environment variables, which are summarized in
Debugger Environment Variables.

Example penv

DebQut = fal se
Synbol sOn = true
StepRegs = fal se

74 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

ReadMentHack = fal se
Attached = true

dot address = 00000000
| ast address = 00001022
| ast count = 0000000a

reg
Purpose Displays all registers.
Usage reg
Parameters None.

Example reg

DO = 00000102 A0 = 10COEEF6 USP = BF6E446F

D1 = 00000013 Al = 10COEFOE SSP = 000132E4

D2 = 00000027 A2 = 000133C2

D3 = 00000000 A3 = 00015404

D4 = 00014B06 A4 = 10CCFB7C

D5 = 00000000 A5 = 000149AA

D6 = OOD1EFES8 A6 = 000133AC PC = 10COEEFE

D7 = 0001515E A7 = 000132E4 SR = tSxnzvc Int =0
reset

Purpose Performs a soft reset on the handheld device.
Usage reset
Parameters None.

Comments This command performs the same reset that is performed when you
press the recessed reset button on a Palm Powered handheld device.
It resets the memory system and reformats both cards.

You can use the r eset command in either the Console window or
the debugging window.

Palm OS Programming Development Tools Guide 75

Palm Debugger Command Reference
Debugging Window Commands

Example

Purpose
Usage

Parameters

Purpose
Usage
Parameters

Example

Purpose
Usage

Parameters

Example

reset
Resetting system

run
Runs a debugger script from file.
run <*fil eNanme”>

filenanme The quoted name of the file that contains the

debugger script.

S

Single steps the processor, stepping into subroutines.
S

None.

S

' SysHandl eEvent'

+$0694 10COF0O80 *MOVEM L (A7) +, D3- D5/ A2- A4 | 4CDF 1C38

save
Saves a range of data from memory to file.

save <“fil eNanme”> <addr> <nunByt es>

fil eName The quoted name of the file to which you want
the data saved.

addr The starting address in memory to save.

nunByt es The number of bytes to save.

save “savedMenil” 0100 100

76 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage

Parameters

Example

Purpose

Usage

Parameters

Example

sb

Sets the value of the byte at the specified address.

sb <addr> <val ue>

addr The address of the byte.
val ue The byte value.
sb 0111 Oa

Menory set starting at 00000111

SC

Displays a list of functions on the stack using information stored in
the A6 frame pointer register.

sc [<addr> [<franmes>]]

addr Optional. The address from which to start
listing.
frames Optional. The number of frames to list. You can

specify this only if you specify a value for addr.

sc

Calling chain using A6 Links:

A6 Frane Cal | er

00000000 10C68982 cjtkend+0000
00015086 10C6CA26 __ Startup__+0060
00015066 10C6CCCE Pil ot Mai n+0250
00014FC2 10COF808 SysAppLaunch+0458
00014F6E 10C10258 PrvCal | Wt hNewSt ack+0016
00013414 10CCFBEO __ Startup__+0060
000133F4 10CDO8CE Pil ot Mai n+0036
000133DA 10CD6D18 Event Loop+0016

Palm OS Programming Development Tools Guide 77

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage

Parameters

Comments

Example

Purpose

Usage

Parameters

sc6
Lists the A6 stack frame chain, starting at the specified address.

sc6 [<addr> [<franes>]]

addr Optional. The address from which to start
listing.
frames Optional. The number of frames to list. You can

specify this only if you specify a value for addr.
This command is the same as the sc command.

sc

Cal I'i ng chain using A6 Links:
A6 Frame Cal | er
00000000 10068982 cjtkend+0000
00015086 10C6CA26 __Startup__+0060
00015066 10C6CCCE Pi | ot Mai n+0250
00014FC2 10COF808 SysAppLaunch+0458
00014F6E 10C10258 PrvCal | WthNewSt ack+0016
00013414 10CCFBEO __ Startup__+0060
000133F4 10CDO8CE Pi | ot Mai n+0036
000133DA 10CD6D18 Event Loop+0016

sc’/

Displays a list of functions on the stack using the stack pointer (A7).
This displays information about functions on the stack that do not
set up frame pointers.

sc7 [<addr> [<frames>]]

addr Optional. The address from which to start
listing.
frames Optional. The number of frames to list. You can

specify this only if you specify a value for addr.

78 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Comments

Example

Purpose
Usage
Parameters

Comments

Example

Purpose
Usage

Parameters

Example

Use the sc7 command instead of the standard stack crawl
command, sc, when you want to display information about
routines on the stack that have not set up frame pointers. Note that
this command will sometimes display bogus routines.

sc7

Return Addresses on the stack:
St ack Addr Cal | er
00013AFC 00000000
000133B0 10CD6D18 Event Loop+0016
00013344 10C1F964 PrvHandl eExchangeEvent s+0028

sizeof

Displays the size, in bytes, of a template.

si zeof <tenpl ate>

tenpl ate The name of the template.

You can use the t enpl at es command to list the available
templates.

si zeof sdword
Size = 4 byte(s)

sl
Sets the value of the 32-bit long integer at the specified address.
sl <addr> <val ue>

addr The address of the 32-bit value.

val ue The long value.

sl 0110 ffffffff
Menory set starting at 00000110

Palm OS Programming Development Tools Guide 79

Palm Debugger Command Reference
Debugging Window Commands

Purpose

Usage

Parameters

Example

Purpose

Usage

Parameters

Comments

Example

SS

Breaks into the debugger when the value of the long word at the
specified address changes.

ss [<addr >]

addr Optional. The address of the 32-bit value. If you
do not specify an address value, the current
program counter location is used.

ss 1000F024

storeinfo
Displays information about a memory store.

storei nfo <car dNunp

car dNum The card number for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

You can use the st or ei nf o command in either the Console
window or the debugging window.

storeinfo O

ROM St or e:
version: 0001
flags: 0000
nanme: ROM Store
creation date: 00000000
backup date: 00000000
heap |ist offset: 00008208
init code offsetl: 00C0D652
init code offset2: 00Cl471E
dat abase dirl D: 00D20F7E

RAM St or e:
versi on: 0001

80 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

flags: 0001

name: RAM Store O

creation date: 00000000
backup date: 00000000

heap |ist offset: 00018100
init code offsetl1l: 00000000
init code offset2: 00000000
dat abase dirl D: 0001811F

SW
Purpose Sets the value of the word at the specified address.
Usage sw <addr> <val ue>

Parameters addr The address of the 16-bit value.
val ue The word value.

Example sw 0110 ffff
Menory set starting at 00000110

Purpose Single steps the processor, stepping over subroutines.
Usage t
Parameters None.

Example t

' SysHandl eEvent

W 1| Branch
+$0514 10COEFO0 *BRA. W SysHandl eEvent +$0694
10C0OF080 | 6000 017E

Palm OS Programming Development Tools Guide 81

Palm Debugger Command Reference
Debugging Window Commands

templates
Purpose Lists the names of the debugger templates.
Usage tenplates
Parameters None.

Example tenplates

Char
Byt e
SByt e
Wor d
SWor d
Dword
SDWwor d

typedef
Purpose Begins a structure definition block.
Usage typedef struct <“nane”>

Parameters nane The quoted name of the template whose
definition you are beginning.

Comments Usethet ypedef command in conjunction with the >andt ypeend
commands to defined structure templates that you can use to
display complex structures with a single memory display (dn)
command.

Example typedef struct *Point Type”
> SWord “X
> SWword “Y”
t ypeend

82 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage
Parameters

Comments

Example

Purpose
Usage

Parameters

Example

typeend

Ends a structure definition block.
t ypeend

None.

Use thet ypedef command in conjunction with the >and t ypeend
commands to defined structure templates that you can use to
display complex structures with a single memory display (dn)
command.

t ypedef struct “Point Type”
> Swrd “X’

> SWword “Y”

t ypeend

var
Defines a debugger variable.
var <"name”> [<initial Val ue>]

name The quoted name of the variable that you are
defining.

initial Val ue Optional. The initial value for the variable. If
you are assigning a string value to the variable,
you must quote the initial value.

var “testvar” 100

var “testvar” “Hello”
WARNI NG redefining variable: testvar

Palm OS Programming Development Tools Guide 83

Palm Debugger Command Reference
Debugging Window Commands

Purpose
Usage
Parameters

Example

Purpose

Usage

Parameters

variables

Lists the names of the debugger variables.
vari abl es

None.

vari abl es

DebQut
Synbol sOn
ReadMenHack
St epRegs
Attached

t estvar
testvar2

wh

Displays system function information for a specified function name
or A-Trap number. Also identifies the memory chunk that contains a
specific address or lists all system functions.

wh [\a <addr>] [<"funcNane”> | <ATrapNunber >]

addr Specifies an address. The wh command displays
the memory chunk that contains this address.

f uncNanme The quoted name of the system function for
which you want information displayed.

ATr apNunber The number of the A-trap number for which
you want information displayed.

84 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Command Summary

Debugging Command Summary

Flow Control Commands

|t—|-

Adds an A-Trap break.

Clears an A-Trap break.

Displays a list of all A-Trap breaks.
Attach to the handheld device.

Sets a breakpoint at the specified address.
Clears a breakpoint or all breakpoints.
Displays a list of all breakpoints.

Clears a breakpoint or all breakpoints.
Enables or disables DbgBr eak() breaks.
Continues execution.

Sets a temporary breakpoint at the specified
address, and resumes execution from the current
program counter.

Resets the memory system and formats both cards.

Single steps the processor, stepping into
subroutines.

Breaks into the debugger when the long word
value at the specified address changes.

Single steps the processor, stepping over
subroutines.

Memory Commands

atr

‘Q.
(ox

Registers a function name with an A-Trap number.

Displays the byte value at a specified address.

Palm OS Programming Development Tools Guide 85

Palm Debugger Command Reference

Debugging Command Summary

<

6 & F
o [T

n
(]
(o3}

%
o
~

N

=

Displays the 32-bit long value at a specified
address.

Displays memory for a specified number of bytes
or templates.

Displays the 16-bit word value at a specified
address.

Searches through a range of memory for a specified
byte value.

Fills memory with a specified byte value.

Searches through a range of memory for a specified
32-bit long value.

Searches through a range of memory for the
specified text.

Searches through a range of memory for the
specified 16-bit word value.

Disassembles code in a specified line range.
Sets the value of the byte at the specified address.

Lists the A6 stack frame chain, starting at the
specified address.

Lists the A6 stack frame chain, starting at the
specified address.

Lists the A7 stack frame chain, starting at the
specified address.

Sets the value of the long at the specified address.
Sets the value of the word at the specified address.

Displays system function information for a
specified function name or A-Trap number. Also
identifies the memory chunk that contains a
specific address or lists all system functions.

86 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Command Summary

Template Commands
> Defines a structure field.

si zeof Displays the size, in bytes, of a template.

t enpl at es Lists the names of the debugger templates.

t ypedef Begins a structure definition block.
t ypeend Ends a structure definition block.

Register Commands
reg Displays all registers.

Utility Commands

alias Defines or displays an alias.
al i ases Displays all debugger alias names.
boot strap Loads a ROM image into memory on the handheld

device, using the bootstrap mode of the processor.

keywor ds Lists all debugger keywords.

| oad Loads the file’s data fork at the specified remote
address.

run Runs a debugger script.

save Saves a range of data from memory to file.

var Defines a debugger variable.

vari abl es Lists the names of the debugger variables.

Console Commands

cardinfo Retrieves information about a memory card.
dir Lists the databases.
dunp Dumps a range of memory to a file.

Palm OS Programming Development Tools Guide 87

Palm Debugger Command Reference
Debugging Command Summary

hchk Checks a heap.

hd Displays a dump of a memory heap.

hl_ Lists all of the memory heaps on the specified
memory card.

ht Performs a heap total.

info Displays information on a heap chunk.

opened Lists all currently opened databases.

storeinfo Retrieves information about a memory store.

Miscellaneous Debugger Commands

hel p Displays a list of available commands.

or
?

hel p <cnd> Displays help for a specific command.
or
? <cnmd>

env Displays debugger environment information.

Debugger Environment Variables

DebQut A Boolean value that specifies if debug style
output is enabled.

ReadMenHack A Boolean value that specifies if the read memory
hack is enabled.

Synbol sOn A Boolean value that specifies if printing of
disassembly symbols is enabled.

St epRegs A Boolean value that specifies if register values
should be shown after every step.

88 Palm OS Programming Development Tools Guide

Palm Debugger Command Reference
Debugging Command Summary

Predefined Constants

true

fal se

sr Cmask
srl mask
sr Nmask
sr Smask
sr Tmask
srVmask
sr Xmask

sr Zmask

Integer value 1.

Integer value 0.

The status register Carry bit.

The status register Interrupt field mask.
The status register Negative bit.

The status register Supervisor bit.

The status register Trace bit.

The status register Overflow bit.

The status register extend bit.

The status register Zero bit.

Palm OS Programming Development Tools Guide 89

Palm Debugger Command Reference
Debugging Command Summary

90 Palm OS Programming Development Tools Guide

3

Debugger Protocol
Reference

This chapter describes the debugger protocol, which provides an
interface between a debugging target and a debugging host. For
example, the Palm Debugger and the Palm OS® Emulator use this
protocol to exchange commands and information.

IMPORTANT: This chapter describes the version of the Palm
Debugger protocol that shipped on the Metrowerks CodeWarrior
for the Palm™ Operating System, Version 6 CD-ROM. If you are
using a different version, the features in your version might be
different from the features described here.

This chapter covers the following topics:
= “About the Palm Debugger Protocol” on page 91

= “Constants” on page 94
= “Data Structures” on page 97
= “Debugger Protocol Commands” on page 99

= “Summary of Debugger Protocol Packets” on page 118

About the Palm Debugger Protocol

The Palm debugger protocol allows a debugging target, which is
usually a handheld device ROM or an emulator program such as
the Palm OS Emulator, to exchange information with a debugging
host, such as the Palm Debugger or the Metrowerks debugger.

The debugger protocol involves sending packets between the host
and the target. When the user of the host debugging program enters
a command, the host converts that command into one or more

Palm OS Programming Development Tools Guide 91

Debugger Protocol Reference
About the Palm Debugger Protocol

command packets and sends each packet to the debugging target. In
most cases, the target subsequently responds by sending a packet
back to the host.

Packets
There are three packet types used in the debugger protocol:

= The debugging host sends command request packets to the
debugging target.

= The debugging target sends command response packets back to
the host.

= Either the host or the target can send a message packet to the
other.

Although the typical flow of packets involves the host sending a
request and the target sending back a response, although there are a
some exceptions, as follows:

= The host can send some requests to the target that do not
result in a response packet being returned. For example,
when the host sends the Cont i nue command packet to tell
the target to continue execution, the target does not send
back a response packet.

= The target can send response packets to the host without
receiving a request packet. For example, whenever the
debugging target encounters an exception, it sends a St at e
response packet to the host.

Packet Structure

Each packet consists of a packet header, a variable-length packet
body, and a packet footer, as shown in Figure 3.1.

92 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
About the Palm Debugger Protocol

Figure 3.1 Packet Structure

$BE
$EF

$ED
destination ID

source I D

Header
type (10 bytes)
body- si-ze - - - - - - -
transaction ID I?:(?Igegtger
header checksum
command | D
filler
Body

(2 to 272 bytes)
command dat a

Foot er
RC (2 bytes)

The Packet Header

The packet header starts with the 24-bit key value $BEEFFD and
includes header information and a checksum of the header itself.

The Packet Body

The packet body contains the command byte, a filler byte, and
between 0 and 270 bytes of data. See *“_SysPktBodyCommon” on
page 97 for a description of the structure used to represent the two
byte body header (the command and filler bytes), and see Table 3.1
for a list of the command constants.

The Packet Footer

The packet footer contains a 16-bit CRC of the header and body.
Note that the CRC computation does not include the footer.

Palm OS Programming Development Tools Guide 93

Debugger Protocol Reference

Constants

Constants

Packet Communications

The communications protocol between the host and target is very
simple: the host sends a request packet to the target and waits for a
time-out or for a response from the target.

If a response is not detected within the time-out period, the host
does not retry the request. When a response does not come back
before timing out, it usually indicates that one of two things is
happening:

= the debugging target is busy executing code and has not
encountered an exception

= the state of the debugging target has degenerated so badly
that it cannot respond

The host has the option of displaying a message to the user to
inform him or her that the debugging target is not responding.

This section describes the constants and structure types that are
used with the packets for various commands.

Packet Constants

#def i ne sysPkt MaxMentChunk 256

#def i ne sysPkt MaxBodySi ze (sysPkt MaxMenTChunk+16)
#def i ne sysPkt MaxNanmeLen 32

sysPkt MaxMentChunk
The maximum number of bytes that can be read
by the Read Menory command or written by
the Wite Menory command.

sysPkt MaxBodySi ze
The maximum number of bytes in a request or
response packet.

sysPkt MaxNanelLen
The maximum length of a function name.

94 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Constants

State Constants
#def i ne sysPkt St at eRspl nst Wrds 15

sysPkt St at eRespl nst Wr ds
The number of remote code words sent in the
response packet for the St at e command.

Breakpoint Constants

#defi ne dbgNor mal Breakpoints 5

#defi ne dbgTenpBPl ndex dbNor mal Breakpoints

#defi ne dbgTot al Breakpoi nt's (dbgTenpBPI ndex+1)

dbgNor mal Br eakpoi nt s

The number of normal breakpoints available in
the debugging target.

dbgTenpBPI ndex
The index in the breakpoints array of the
temporary breakpoint.

dbgTot al Br eakpoi nts
The total number of breakpoints in the
breakpoints array, including the normal
breakpoints and the temporary breakpoint.

Command Constants

Each command is represented by a single byte constant. The upper
bit of each request command is clear, and the upper bit of each
response command is set. Table 3.1 shows the command constants.

Table 3.1 Debugger protocol command constants

Command Request constant Response constant

Cont i nue sysPkt Cont i nueCnd N/ZA

Find sysPkt Fi ndCnd sysPkt Fi ndRsp

Get sysPkt Get Br eakpoi nt sCnd sysPkt Get Br eakpoi nt sRsp
Br eakpoi nts

Get Routine sysPkt Get Rt nNaneCnd sysPkt Get Rt nNaneRsp
Nane

Palm OS Programming Development Tools Guide 95

Debugger Protocol Reference

Constants
Table 3.1 Debugger protocol command constants (continued)
Command Request constant Response constant
Get Trap sysPkt Get Tr apBr eaksCnd sysPkt Get Tr apBr eaksRsp
Br eaks
Get Trap sysPkt Get Tr ap sysPkt Get Tr ap
Condi tionals Conditional sCrd Condi ti onal sRsp
Message sysPkt Renot eMsgCnd N/A
Read Menory sysPkt ReadMentnd sysPkt ReadMenRsp
Read sysPkt ReadRegsCnd sysPkt ReadRegsRsp
Reqgi sters
RPC sysPkt RPCCnd sysPkt RPCRsp
Set sysPkt Set Br eakpoi nt sCrd sysPkt Set Br eakpoi nt sRsp
Br eakpoi nt s
Set Trap sysPkt Set Tr apBr eaksCnd sysPkt Set Tr apBr eaksRsp
Br eaks
Set Trap sysPkt Set Tr ap sysPkt Set Tr ap
Condi tionals Conditional sCrd Condi ti onal sRsp
State sysPkt St at eCnd sysPkt St at eRsp
Togagl e sysPkt DbgBr eakToggl eCnd sysPkt DbgBr eakToggl eRsp
Debugger
Br eaks

Wite Menory

Wite
Regi sters

sysPkt Wi teMenCnd
sysPkt Wit eRegsCnd

sysPkt WiteMenRsp
sysPkt Wit eRegsRsp

96 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Data Structures

Data Structures

This section describes the data structures used with the request and
response packets for the debugger protocol commands.

_SysPktBodyCommon

The _SysPkt Body Common macro defines the fields common to
every request and response packet.

#defi ne _sysPkt BodyConmon \
Byt e command; \
Byte _filler;

Fields

conmand The 1-byte command value for the packet.
_filler Included for alignment only. Not used.
SysPktBodyType

The SysPkt Body Type represents a command packet that is sent to
or received from the debugging target.

t ypedef struct SysPktBodyType

{
_SysPkt Body Conmon;

Byt e dat a[sysPkt MaxBodySi ze- 2] ;
} SysPkt BodyType;
Fields

_SysPkt BodyConmmon
The command header for the packet.

dat a The packet data.

Palm OS Programming Development Tools Guide 97

Debugger Protocol Reference

Data Structures

SysPktRPCParamType

The SysPktRPCParamType is used to send a parameter in a remote
procedure call. See the RPC command for more information.

typedef struct SysPkt RPCParam nfo
{

Byte byRef;

Byte size;

Wrd datal?];
} SysPkt RPCPar amlype;

Fields

by Ref Set to 1 if the parameter is passed by reference.

size The number of bytes in the data array. This
must be an even number.

dat a The parameter data.

BreakpointType

The Br eakpoi nt Type structure is used to represent the status of a
single breakpoint on the debugging target.

t ypedef struct BreakpointType
{

Ptr addr;

Bool ean enabl ed;

Bool ean install ed;
} Breakpoi nt Type;

Fields

addr The address of the breakpoint. If this is set to O,
the breakpoint is not in use.

enabl ed A Boolean value. This is TRUE if the breakpoint
is currently enabled, and FALSE if not.

instal |l ed Included for correct alignment only. Not used.

98 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

This section describes each command that you can send to the
debugging target, including a description of the response packet
that the target sends back.

Continue
Tells the debugging target to continue execution.

This command usually gets sent when the user specifies the Go
command. Once the debugging target continues execution, the
debugger is not reentered until a breakpoint or other exception is
encountered.

NOTE: The debugging target does not send a response to this
command.

The Cont i nue request command is defined as follows:
#def i ne sysPkt Conti nueCndOx07

typedef struct SysPkt Conti nueCndType

{
_sysPkt BodyConmon;

M68Kr esgType regs;
Bool ean st epSpy;
DWrd ssAddr;
DWrd ssCount;
DWrd ssCheckSum
} SysPkt Cont i nueCndType;

Fields

<— sysPkt BodyCommon
The common packet header, as described in
_SysPkt BodyCommon.

—>regs The new values for the debugging target
processor registers. The new register values are
stored in sequential order: DO to D7, followed
by AO to A6.

Palm OS Programming Development Tools Guide 99

Debugger Protocol Reference
Debugger Protocol Commands

—> st epSpy

—> ssAddr

—> ssCount

A Boolean value. If this is TRUE, the debugging
target continues execution until the value that
starts at the specified step-spy address changes.
If this is FALSE, the debugging target continue
execution until a breakpoint or other exception
is encountered.

The step-spy starting address. An exception is
generated when the value starting at this
address, for ssCount bytes, changes on the
debugging target.

The number of bytes in the “spy” value.

—>ssCheckSum A checksum for the “spy” value.

Find

Purpose Searches for data in memory on the debugging target.

Commands The Fi nd request and response commands are defined as follows:

#def i ne sysPkt Fi ndCnrd0x13
#def i ne sysPkt Fi ndRsp0x93

Request Packet typedef struct SysPktFindCndType

{

_sysPkt Body Conmon;
DWord firstAddr;
DWord | ast Addr;
Word nunBytes
Bool ean casel nsensitive;
Byte searchbData[?];
} SysPkt Fi ndCnd Ty pe;

Fields

—> sysPkt BodyConmon

—>firstAddr

The common packet header, as described in
_SysPkt BodyCommon.

The starting address of the memory range on
the debugging target to search for the data.

100 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Response
Packet

Purpose

Comments

—>| ast Addr The ending address of the memory range on
the debugging target to search for the data.

—>nunByt es The number of bytes of data in the search
string.

—>searchDat a The search string. The length of this array is
defined by the value of the nunByt es field.

typedef struct SysPktFi ndRspType

{
_sysPkt BodyConmon;
DWord addr;
Bool ean found;

} SysPkt Fi ndRspType

Fields

<— sysPkt BodyCommon
The common packet header, as described in
_SysPkt BodyConmon.

<— addr The address of the data string in memory on
the debugging target.
<—found A Boolean value. If this is TRUE, the search

string was found on the debugging target, and
the value of addr is valid. If this is FALSE, the
search string was not found, and the value of
addr is not valid.

Get Breakpoints
Retrieves the current breakpoint settings from the debugging target.

The body of the response packet contains an array with
dbgTot al Br eakpoi nt s values in it, one for each possible
breakpoint.

If a breakpoint is currently disabled on the debugging target, the
enabled field for that breakpoint is set to 0.

If a breakpoint address is set to 0, the breakpoint is not currently in
use.

Palm OS Programming Development Tools Guide 101

Debugger Protocol Reference
Debugger Protocol Commands

The dbgTot al Br eakpoi nt s constant is described in “Breakpoint
Constants” on page 95.

Commands The Get Breakpoi nt s command request and response
commands are defined as follows:

#def i ne sysPkt Get Br eakpoi nt sCnd 0x0B
#defi ne sysPkt Get Breakpoi nt sRsp 0x38B

Request Packet typedef struct SysPktGet BreakpointsCmdType

{
_sysPkt BodyConmon;

} SysPkt Get Br eakpoi nt sCndType

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyConmon.

Response typedef struct SysPkt Get Breakpoi nt sRspType

Packet {
_sysPkt BodyConmon;

Br eakpoi nt Type db[dbgTot al Br eakpoi nt s];
} SysPkt Get Br eakpoi nt sRspType

Fields

<— sysPkt BodyCommon
The common packet header, as described in
_SysPkt BodyCommmon.

<—bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
Br eakpoi nt Type.

Get Routine Name

Purpose Determines the name, starting address, and ending address of the
function that contains the specified address.

102 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Comments

Commands

Request Packet

Response
Packet

The name of each function is imbedded into the code when it gets
compiled. The debugging target can scan forward and backward in
the code to determine the start and end addresses for each function.

The Get Rout i ne Name command request and response
commands are defined as follows:

#def i ne sysPkt Get Rt nNaneCnd 0x04
#def i ne sysPkt Get Rt nNaneRsp 0x84

typedef struct SysPktRt nNameCndType

{
_sysPkt BodyConmon;
voi d* address

} SysPkt Rt nNameCndType;

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt Body Comon.

—>addr ess The code address whose function name you
want to discover.

typedef struct SysPktRtnNameRspType

{
_sysPkt BodyConmon;

voi d* address;

voi d* startAddr;

voi d* endAddr

char nane[sysPkt MaxNaneLen] ;
} SysPkt Rt nNanmeRspType;

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt BodyCommmon.

<— addr ess The code address whose function name was
determined. This is the same addr ess that was
specified in the request packet.

<—startAddr The starting address in target memory of the
function that includes the address.

Palm OS Programming Development Tools Guide 103

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

<— endAddr The ending address in target memory of the
function that includes the address. If a function
name could not be found, this is the last
address that was scanned.

<— nane The name of the function that includes the
addr ess. This is a null-terminated string. If a
function name could not be found, this is the
null string.

Get Trap Breaks
Retrieves the settings for the trap breaks on the debugging target.

Trap breaks are used to force the debugging target to enter the
debugger when a particular system trap is called.

The body of the response packet contains an array with
dbgTot al Br eakpoi nt s values in it, one for each possible trap
break.

Each trap break is a single word value that contains the system trap
number.

The Get Trap Breaks request and response commands are
defined as follows:

#defi ne sysPkt Get Tr apBreaksCnd 0x10
#def i ne sysPkt Get Tr apBr eaksRsp 0x90

typedef struct SysPkt Get Tr apBr eaksCndType

{
_sysPkt Body Conmon;
} SysPkt Get Tr apBr eaksCnmdType;

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt Body Comon.

104 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Response
Packet

Purpose

Comments

Commands

Request Packet

typedef struct SysPkt Get TrapBreaksRspType

{
_sysPkt BodyConmon;

Word trapBP[dbgTot al Tr apBr eaks] ;
} SysPkt Get Tr apBr eaksRspType;

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt BodyConmon.

<—trapBP An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
break is not used.

Get Trap Conditionals
Retrieves the trap conditionals values from the debugging target.

Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

The body of the response packet contains an array with
dbgTot al Br eakpoi nt s values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

The Get Trap Condi ti onal s request and response commands
are defined as follows:

#defi ne sysPkt Get TrapCondi ti onsCnd 0x14
#def i ne sysPkt Get TrapCondi ti onsRsp 0x94

typedef struct SysPkt Get TrapConditi onsCndType

{
_sysPkt BodyConmon;
} SysPkt Get Tr apCondi ti onsCndType

Palm OS Programming Development Tools Guide 105

Debugger Protocol Reference
Debugger Protocol Commands

Response
Packet

Purpose

Comments

Commands

Request Packet

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyComon.

t ypedef struct SysPkt Get TrapConditi onsRspType

{
_sysPkt BodyConmon;

Word trapPar anf{ dbgTot al Tr apBr eaks] ;
} SysPkt Get Tr apCondi ti onsRspType

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt BodyConmon.

<—trapParam An array with an entry for each of the possible
trap breaks. A value of O indicates that the trap
conditional is not used.

Message
Sends a message to display on the debugging target.

Application can compile debugger messages into their code by
calling the DbgMessage function.

The debugging target does not send back a response packet for this
command.

The Message request command is defined as follows:
#def i ne sysPkt Renot eMsgCnmd Ox7F

typedef struct SysPktRenoteMsgCrdType
{

_sysPkt Body Conmon;

Byte text[1];
} SysPkt Renot eMsgCnd Ty pe;

106 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

Response
Packet

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyComon.

—>text

Read Memory
Reads memory values from the debugging target.

This command can read up to sysPkt MaxMentChunk bytes of
memory. The actual size of the response packet depends on the
number of bytes requested in the request packet.

The Read Menory command request and response commands are
defined as follows:

#defi ne sysPkt ReadMenCnd 0x01
#def i ne sysPkt ReadMenRsp 0x81

typedef struct SysPkt ReadMenCndType

{
_sysPkt BodyConmon;

voi d* address;
Word nunBytes;
} SysPkt ReadMenCrd Ty pe;

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt Body Common.

—>addr ess The address in target memory from which to
read values.

—> nunByt es The number of bytes to read from target
memory.

typedef struct SysPkt ReadMenRspType
{

_sysPkt BodyConmon;

/] Byte data[?];
} SysPkt ReadMenRspType;

Palm OS Programming Development Tools Guide 107

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

Response
Packet

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt BodyComon.

<—data The returned data. The number of bytes in this
field matches the nunByt es value in the
request packet.

Read Registers
Retrieves the value of each of the target processor registers.

The eight data registers are stored in the response packet body
sequentially, from DO to D7. The seven address registers are stored
in the response packet body sequentially, from AO to A6.

The Read Regi st er s command request and response commands
are defined as follows:

#def i ne sysPkt ReadRegsCnd 0x05
#defi ne sysPkt ReadRegsRsp 0x85

typedef struct SysPkt ReadRegsCndType

{
_sysPkt BodyConmon;
} SysPkt ReadRegsCndType;

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyConmon.

typedef struct SysPkt ReadRegsRspType
{

_sysPkt Body Conmon;

M68KRegsType reg;
} SysPkt ReadRegsRspType;

108 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Commands

Request Packet

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt BodyComon.

<—reg The register values in sequential order: DO to
D7, followed by AO to A6.

RPC

Sends a remote procedure call to the debugging target.

The RPCrequest and response commands are defined as follows:

#defi ne sysPkt RPCCnd Ox0A
#defi ne sysPkt RPCRsp Ox8A

typedef struct SysPkt RPCType

{
_sysPkt BodyConmon;

Word trapWrd;

DWord resul t DO;

DWord resul t DO;

Word nunPar ans;

SysPkt RPCPar anifype par ani ?];

}

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyCommon.

—>trapWrd The system trap to call.

—>resul tDO The result from the DO register.
—>resul t AO The result from the AO register.

—> nunPar ans The number of RPC parameter structures in the
par amarray that follows.

—> par am An array of RPC parameter structures, as
described in SysPkt RPCPar anilype.

Palm OS Programming Development Tools Guide 109

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

Response
Packet

Set Breakpoints
Sets breakpoints on the debugging target.

The body of the request packet contains an array with

dbgTot al Br eakpoi nt s values in it, one for each possible
breakpoint. If a breakpoint is currently disabled on the debugging
target, the enabled field for that breakpoint is set to O.

The dbgTot al Br eakpoi nt s constant is described in Breakpoint
Constants.

The Set Br eakpoi nt s command request and response
commands are defined as follows:

#def i ne sysPkt Set Br eakpoi nt sCnd 0x0C
#def i ne sysPkt Set Br eakpoi nt sRsp 0x8C

typedef struct SysPkt Set Breakpoi nt sCrdType

{
_sysPkt BodyConmon;

Br eakpoi nt Type db[dbgTot al Br eakpoi nt s] ;
} SysPkt Set Br eakpoi nt sCndType

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyConmon.

—>bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
Br eakpoi nt Type.

typedef struct SysPkt Set Breakpoi nt sRspType

{
_sysPkt BodyConmon;
} SysPkt Set Br eakpoi nt sRspType

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt BodyCommon.

110 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

Response
Packet

Set Trap Breaks
Sets breakpoints on the debugging target.

The body of the request packet contains an array with

dbgTot al Br eakpoi nt s values in it, one for each possible trap
break. If a trap break is currently disabled on the debugging target,
the value of that break is set to O.

The dbgTot al Br eakpoi nt s constant is described in Breakpoint
Constants.

The Set Br eakpoi nt s command request and response
commands are defined as follows:

#def i ne sysPkt Set Tr apBr eaksCnd 0x0C
#def i ne sysPkt Set Tr apBr eaksRsp 0x8C

typedef struct SysPkt Set Tr apBr eakssCrdType

{
_sysPkt BodyConmon;

Word trapBP[dbgTot al Breakpoi nt s];
} SysPkt Set Tr apBr eaksCndType

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyConmon.

—>trapBP An array with an entry for each of the possible
trap breaks. If the value of an entry is 0, the
break is not currently in use.

typedef struct SysPkt Set TrapBreaksRspType

{
_sysPkt BodyConmon;

} SysPkt Set Tr apBr eaksRspType

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt BodyCommon.

Palm OS Programming Development Tools Guide 111

Debugger Protocol Reference
Debugger Protocol Commands

Set Trap Conditionals
Purpose Sets the trap conditionals values for the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

The body of the request packet contains an array with
dbgTot al Br eakpoi nt s values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Set Trap Condi ti onal s request and response commands
are defined as follows:

#defi ne sysPkt Set TrapCondi ti onsCnd 0x15
#def i ne sysPkt Set TrapCondi ti onsRsp 0x95

Request Packet typedef struct SysPkt Set TrapConditi onsCndType

{
_sysPkt Body Conmon;

Word trapPar anf dbgTot al Tr apBr eaks] ;
} SysPkt Set Tr apCondi ti onsCndType

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyComon.

—>trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used.

Response typedef struct SysPkt Set TrapConditi onsRspType
Packet {
_sysPkt BodyConmon;
} SysPkt Set Tr apCondi ti onsRspType

112 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

Response
Packet

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt BodyComon.

State

Sent by the host program to query the current state of the debugging
target, and sent by the target whenever it encounters an exception
and enters the debugger.

The debugging target sends the St at e response packet whenever it
enters the debugger for any reason, including a breakpoint, a bus
error, a single step, or any other reason.

The St at e request and response commands are defined as follows:
#defi ne sysPkt StateCrd 0x00
#def i ne sysPkt St at eRsp 0x80

typedef struct SysPkt StateCndType

{
_sysPkt BodyConmon;
} SysPkt St at eCndType

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt Body Common.

t ypedef struct SysPkt StateRspType
{
_sysPkt BodyConmon;
Bool ean resetted;
Word exceptionld;
M68Kr egsType reg;
Word i nst[sysPkt St at eRspl nst Wrds] ;
Br eakpoi nt Type bp[dbgTot al Br eakpoi nt s] ;
voi d* start Addr;
voi d* endAddr;
char name[sysPkt MaxNanelLen] ;
Byte trapTabl eRev;
} SysPkt St at eRspType;

Palm OS Programming Development Tools Guide 113

Debugger Protocol Reference
Debugger Protocol Commands

Fields

<— sysPkt BodyComon

<—resetted

<—exceptionld

<—reg
<— 1| nst
<— bp

<—start Addr

<—endAddr

<— nane

<—trapTabl eRev

The common packet header, as described in
_SysPkt BodyComon.

A Boolean value. This is TRUE if the debugging
target has just been reset.

The ID of the exception that caused the
debugger to be entered.

The register values in sequential order: DO to
D7, followed by AO to A6.

A buffer of the instructions starting at the
current program counter on the debugging
target.

An array with an entry for each of the possible
breakpoints. Each entry is of the type
Br eakpoi nt Type.

The starting address of the function that
generated the exception.

The ending address of the function that
generated the exception.

The name of the function that generated the
exception. This is a null-terminated string. If no
name can be found, this is the null string.

The revision number of the trap table on the
debugging target. You can use this to determine
when the trap table cache on the host computer
is invalid.

114 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

Response
Packet

Toggle Debugger Breaks

Enables or disables breakpoints that have been compiled into the
code.

A breakpoint that has been compiled into the code is a special TRAP
instruction that is generated when source code includes calls to the
DbgBr eak and DbgSr cBr eak functions.

Sending this command toggles the debugging target between
enabling and disabling these breakpoints.

The Toggl e Debugger Breaks request and response commands
are defined as follows:

#def i ne sysPkt DogBr eakToggl eCnd 0x0D
#def i ne sysPkt DogBr eakToggl eRsp 0x8D

typedef struct SysPktDbgBreakToggl eCrdType

{
_sysPkt BodyConmon;
} SysPkt DbgBr eak Toggl eCnd Ty pe;

Fields

—> sysPkt BodyCommon
The common packet header, as described in
_SysPkt BodyCommmon.

t ypedef struct SysPktDbgBreakToggl eRspType

{
_sysPkt Body Conmon;

Bool ean newSt at e
} SysPkt DbgBr eakToggl eRspType;

Fields

<— sysPkt BodyComon
The common packet header, as described in
_SysPkt Body Common.

Palm OS Programming Development Tools Guide 115

Debugger Protocol Reference
Debugger Protocol Commands

Purpose

Comments

Commands

Request Packet

<—newsSt at e A Boolean value. If this is set to TRUE, the new
state has been set to enable breakpoints that
were compiled into the code. If this is set to
FALSE, the new state has been set to disable
breakpoints that were compiled into the code.

Write Memory
Writes memory values to the debugging target.

This command can write up to sysPkt MaxMenChunk bytes of
memory. The actual size of the request packet depends on the
number of bytes that you want to write.

The Wi te Menory command request and response commands are
defined as follows:

#define sysPkt WiteMenCnd 0x02
#define sysPkt WiteMenRsp 0x82

typedef struct SysPktWiteMenmCndType

{
_sysPkt Body Conmon;

voi d* address;
Word nunByt es;
/1 Byte data[?]

} SysPkt Wit eMenCndType;

Fields

—> sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyConmon.

--> addr ess The address in target memory to which the
values are written.

-->nunByt es The number of bytes to write.

-->dat a The bytes to write into target memory. The size
of this field is defined by the nunByt es
parameter.

116 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands

Response
Packet

Purpose

Comments

Commands

Request Packet

Response
Packet

typedef struct SysPktWiteMenRspType

{
_sysPkt BodyConmon;
} SysPkt Wi teMenRspType;

Fields

<-- _sysPkt BodyConmon
The common packet header, as described in
_SysPkt BodyConmon.

Write Registers
Sets the value of each of the target processor registers.

The eight data registers are stored in the request packet body
sequentially, from DO to D7. The seven address registers are stored
in the request packet body sequentially, from AO to A6.

The Wi te Regi st ers command request and response
commands are defined as follows:

#define sysPkt WiteRegsCnmd 0x06
#define sysPkt Wit eRegsRsp 0x86

typedef struct SysPktWiteRegsCdType

{
_sysPkt BodyConmon;

M68KRegsType reg;
} SysPkt Wit eRegsCndType;

Fields

--> sysPkt BodyCommon
The common packet header, as described in
_SysPkt BodyConmon.

—>reg The new register values in sequential order: DO
to D7, followed by AO to A6.

typedef struct SysPktWiteRegsRspType

{
_sysPkt BodyConmon;
} SysPkt Wit eRegsRspType;

Palm OS Programming Development Tools Guide 117

Debugger Protocol Reference
Summary of Debugger Protocol Packets

Fields

<— sysPkt BodyComon

The common packet header, as described in
_SysPkt BodyComon.

Summary of Debugger Protocol Packets

Table 3.2 summarizes the command packets that you can use with
the debugger protocol.

Table 3.2 Debugger protocol command packets

Command Description
Cont i nue Tells the debugging target to continue execution.
Fi nd Searches for data in memory on the debugging target.

Get _Breakpoints

Get _Routine Nane

Get Trap Breaks

Get Trap Conditionals

Message
Read Menory

Read Regi sters

RPC

Set Breakpoints

Set Trap Breaks

Retrieves the current breakpoint settings from the
debugging target.

Determines the name, starting address, and ending
address of the function that contains the specified
address.

Retrieves the settings for the trap breaks on the
debugging target.

Retrieves the trap conditionals values from the
debugging target.

Sends a message to display on the debugging target.
Reads memory values from the debugging target.

Retrieves the value of each of the target processor
registers.

Sends a remote procedure call to the debugging target.
Sets breakpoints on the debugging target.
Sets breakpoints on the debugging target.

118 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Summary of Debugger Protocol Packets

Table 3.2 Debugger protocol command packets (continued)

Command Description

Set Trap Conditionals Setsthe trap conditionals values for the debugging
target.

State Sent by the host program to query the current state of

the debugging target, and sent by the target whenever
it encounters an exception and enters the debugger.

Toggl e Debugger Enables or disables breakpoints that have been

Br eaks compiled into the code.

Wite Menory Writes memory values to the debugging target.
Wite Registers Sets the value of each of the target processor registers.

Palm OS Programming Development Tools Guide 119

A

Using the Console
Window

This chapter describes the console window, which you can use with
Palm Debugger, Palm Simulator, and the Metrowerks CodeWarrior
environment to perform maintenance and high-level debugging of a
Palm™ handheld device.

The following topics are covered in this chapter:
= “About the Console Window”

= “Connecting the Console Window” on page 122

= “Entering Console Window Commands” on page 125

= “Command Syntax” on page 128
= “Console Window Commands” on page 130

= “Console Command Summary” on page 166

About the Console Window

The console window interfaces with a handheld device by sending
information packets to and receiving information packets from the
console nub on the device. The console interface provides a number
of commands, which are used primarily for administration of
databases and heap testing on handheld devices.

The console is available in three environments:

= as a separate window for sending and receiving commands
in the Palm Debugger program, which is described in
Chapter 1, “Using Palm Debugger.”

= as a separate window that you can open from within Palm
Simulator program, which is described in Chapter 1, “Using
Palm Simulator.”

Palm OS Programming Development Tools Guide 121

Using the Console Window
Connecting the Console Window

= as a separate window that you can open within the
Metrowerks CodeWarrior environment.

The console window provides the same commands and same
interface in all three environments.

To use the console commands, you must connect your desktop
computer with the console nub on the device, as described in the

next section, Connecting the Console Window.

To learn more about using console commands, see the section
“Entering Console Window Commands” on page 125. For a
complete reference description of each console command, see
“Console Window Commands” on page 130. The commands are
summarized in “Console Command Summary” on page 166.

Connecting the Console Window

Activating Console Input

To send console commands to the handheld device, you must
connect your desktop computer to the handheld device, activate the
console nub on the device, and then type commands into the
console window.

The console nub runs as a background thread on the device,
listening for commands on the serial or USB port. To activate the
console nub, use the , as described in “Using Shortcut Numbers to
Activate the Windows” on page 123.

When the console nub activates, it sends out a “Ready” message. If
your desktop computer is connected to the device when the nub is
activated, this message will display in the console window.

122 Palm OS Programming Development Tools Guide

Using the Console Window
Connecting the Console Window

IMPORTANT: The console nub activates at 57,600 baud, and
your port configuration must match this is you are connecting over
a serial port. You must set the connection parameters correctly for
communications to work.

After you activate the console nub on the handheld device, the
nub prevents other applications, including HotSync® from using
the serial port. You have to soft-reset the handheld device before
the port can be used.

Verifying Your Connection

To verify your device connection, you can type one of the simple
console commands, such asdi r or hl 0. If your connection is
working and the console nub is active on the handheld device, you
will see a list of memory heaps displayed in the window.

If the console nub is not running on the handheld device, or if the
communications connection is not correctly configured, you will see
an error message:

Error $00000404 occurred

If you are certain that the console nub is running on the handheld,
you need to set the connection parameters correctly. If you are using
the console with Palm Debugger, you can use the Communications
menu to set the parameters.

Using Shortcut Numbers to Activate the
Windows

Palm OS responds to a number of “hidden” shortcuts for debugging
your programs, including shortcuts for activating the console nub
on the handheld device. You generate each of these shortcuts by
drawing characters on your Palm Powered™ device, or by drawing
them in the Palm OS® Emulator emulator program, if you are using
Palm OS Emulator to debug your program.

Palm OS Programming Development Tools Guide 123

Using the Console Window
Connecting the Console Window

NOTE: If you open the Find dialog box on the handheld device
before entering a shortcut number, you get visual feedback as
you draw the strokes.

To enter a shortcut number, follow these steps:

1. Onyour Palm Powered device, or in the emulator program,
draw the shortcut symbol. This is a lowercase, cursive “L”
character, drawn as follows:

2. Next, tap the stylus twice, to generate a dot (a period).

3. Next, draw a number character in the number entry portion
of the device’s text entry area. Table 4.1 shows the different
shortcut numbers that you can use.

For example, to activate the console nub on the handheld
device, enter the follow sequence:

{2

124 Palm OS Programming Development Tools Guide

Using the Console Window
Entering Console Window Commands

Table 4.1 Shortcut Numbers for Debugging

Number Description Notes

The device enters debugger This mode opens a serial port, which
'Q L mode, and waits for a low-level drains power over time.
' debugger to connect. A flashing
square appears in the top left You must perform a soft reset or use the

corner of the device. debugger’sr eset command to exit this
mode.
The device enters console This mode opens a serial port, which
'Q 2 mode, and waits for drains power over time.
' communication, typically from
a high-level debugger. You must perform a soft reset to exit this
mode.

The device’s automatic power- You can still use the device’s power
'Q 3 off feature is disabled. button to power it on and off. Note that
' your batteries can drain quickly with
automatic power-off disabled.

You must perform a soft reset to exit this
mode.

NOTE: These debugging shortcuts leave the device in a mode
that requires a soft reset. To perform a soft reset, press the reset
button on the back of the handheld with a blunt instrument, such
as a paper clip.

Entering Console Window Commands

You use the console window to enter console commands, which are
typically used for administrative tasks such as managing databases
on the handheld device. Commands that you type into the console
window are sent to the console nub on the handheld device, and the
results sent back from the device are displayed in the console
window.

Palm OS Programming Development Tools Guide 125

Using the Console Window
Entering Console Window Commands

NOTE: Console command input is not case sensitive.

Table 4.2 shows the most commonly used console window
commands.

Table 4.2 Commonly Used Console Commands

Command Description

del Deletes a database from the handheld device.

dir Displays a list of the databases on the handheld
device.

export Copies a Palm OS database from the handheld

device to the desktop computer.

ort Copies a Palm OS database from the desktop
computer to the handheld device.

Listing 4.1 shows an example of using console commands. In this
example, bol df ace is used to denote commands that you type.

Listing 4.1 Importing a Database into the Handheld Device

i mport O “C:. Docunent s\ MyDbs\ Tex2HexApp. prc”

Creating Database on card O
name: Text to Hex
type appl, creator TxHx

| mporting resource 'code' =0...

I mporting resource 'data' =0...

| mporting resource 'pref'=0....

I mporting resource 'rloc'=0....

| mporting resource 'code' =1...

| mporting resource 'tFRM =1000.. .
I mporting resource "tver'=1...

I mporting resource 'tAlB =1000...
| mporting resource ' Thnp' =1000. . .
| mporting resource ' Thnp' =1001. ..
| mporting resource ' MBAR =1000. ..
| mporting resource 'Talt'=1000....

126 Palm OS Programming Development Tools Guide

Using the Console Window
Entering Console Window Commands

I mporting resource 'Talt'=1001....

Success!

dir 0

name ID t ot al dat a
*System 00D20A44 392.691 Kb 390.361 Kb
* AMX 00D209C4 20. 275 Kb 20. 123 Kb
*Ul AppShel | 00D20944 1.327 Kb 1.175 Kb
* PADHTAL Li brary 00D208E2 7.772 Kb 7.674 Kb
*1rDA Library 00D20876 39.518 Kb 39. 402 Kb
*Net Library 00D207E2 86. 968 Kb 86. 780 Kb
*PPP Net | F 00D2073A 30.462 Kb 30. 238 Kb
*SLIP NetlF 00D20692 15.812 Kb 15. 588 Kb

*Loopback NetlF 00D20630 1.810 Kb 1.712 Kb
*M5- CHAP Support 00D205C4 4.342 Kb 4.226 Kb

* Net wor k 00D203D2 40. 442 Kb 39. 624 Kb
*Addr ess Book 00D20226 59. 825 Kb 59.133 Kb
*Cal cul at or 00D2002A 14.597 Kb 13.761 Kb
*Dat e Book OOD1FCF8 106.200 Kb 104.806 Kb
*Launcher 00D1FA98 36. 633 Kb 35.617 Kb
*Meno Pad OOD1F91E 24.267 Kb 23.665 Kb
*Pr ef er ences 00D1F876 1.403 Kb 1.179 Kb
*Security 00D1F706 8.414 Kb 7.830 Kb
*Hot Sync 00D1F334 39.078 Kb 37.396 Kb
*To Do Li st O0OD1F1E2 33.232 Kb 32. 702 Kb
*Digitizer 00D1F126 2.002 Kb 1.742 Kb
*Gener al O00D1EFES 8. 749 Kb 8. 255 Kb
*For mat s OOD1EF4A 4,732 Kb 4.526 Kb
*Short Cut s 00D1EE34 6. 499 Kb 6.077 Kb
*Oonner O0OD1ED5A 4.095 Kb 3.781 Kb
*Butt ons OOD1ECAE 7.419 Kb 7.015 Kb
*Modem 00D1EB74 8.222 Kb 7.908 Kb
*Mai | 00D1E838 59. 765 Kb 58. 353 Kb
*Expense 00D1E614 42.304 Kb 41.396 Kb
*Unsaved Preferences 0001811B 0. 898 Kb 0. 550 Kb
*Net Prefs 00018133 0. 084 Kb 0. 000 Kb
Addr essDB 00018137 66. 149 Kb 51. 945 Kb
MenoDB 0001815F 2.186 Kb 1.902 Kb
ToDoDB 00018173 1. 000 Kb 0.876 Kb
Mai | DB 0001817F 1.033 Kb 0.929 Kb
Dat ebook DB 000181EB 53.162 Kb 29. 678 Kb

System M DI Sounds 000181B3 1.066 Kb 0.842 Kb
*Saved Preferences 00018123 3. 753 Kb 3.031 Kb

Net wor kDB 0001818B 0. 986 Kb 0.722 Kb
*Graffe Hi gh Score 00018273 0.126 Kb 0. 020 Kb
Dat ebk3DB 0001827B 0. 084 Kb 0. 000 Kb
ReDoDB 0001827F 0. 084 Kb 0. 000 Kb

Palm OS Programming Development Tools Guide 127

Using the Console Window
Command Syntax

Launcher DB 0001814F 0.
*M neHunt 00018287 9.
* SubHunt 000182DF 17.
*Puzzl e 0001837F 5.
*Har dBal | 000183B7 18.

Pi ctures 0001842B 0.
* Jot 0001842F 120.
*Graffiti ShortCuts OO1FFE7TF
*UnDupe 001FFE87 9.
*Wor dVi ew 001FFEC3 17.
*Sheet Vi ew 001FFF1F 56

AQU Birds of NA O001FFE15 130

ExpenseDB 001FBCB5 0.

DocsToGoDB 001FBCC1 0.

bi rds. PDB 001FBCD1 0.

foo 0001812F 0.
*Text To Hex 001FFF85 34.

Kb 0.
Kb 9.
Kb 16.
Kb 4,
Kb 18.
Kb 0.
Kb 119.
. 872 Kb

Kb 9.
Kb 16.
Kb 55
Kb 90.
Kb 0.
Kb 0.
Kb 0.
Kb 0.
Kb 33.

. 766 Kb

Total : 59

These and all of the other console commands are described in detail
in “Console Window Commands” on page 130.

Command Syntax

This chapter uses the following syntax to specify the format of
debugger commands:

commandNane <par aneter> [options]

comrandName
par anet er

options

The name of the command.

Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by

the | character.

Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window.

128 Palm OS Programming Development Tools Guide

Using the Console Window
Command Syntax

NOTE: Any portion of a command that is shown enclosed in
square brackets (“[” and “]”) is optional.

The following is an example of a command definition
dir (<cardNune| <srchQOptions>) [displayOptions]

The di r command takes either a card number of a search
specification, followed by display options.

Here are two examples of the di r command sent from the console
window:

dir 0 -a
dir -t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash. For example:

-C
-enabl e

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\tenmp\nyLogFile
-t Rsrc

NOTE: You use the dash (-) character to specify options for
console commands. If you are using Palm Debugger, you must
use the backslash (\) character to specify options for commands
that you type in the debugging window; this is because the
expression parser used for debugging commands interprets the
dash as a minus sign.

Palm OS Programming Development Tools Guide 129

Using the Console Window
Console Window Commands

Specifying Numeric and Address Values

Many of the console commands take address or numeric arguments.
You can specify these values in hexadecimal, decimal, or binary. All
values are assumed to be hexadecimal unless preceded by a sign
that specifies decimal (#) or binary (%9. Table 4.3 shows values
specified as binary, decimal, and hexadecimal in a debugging
command:

Table 4.3 Specifying Numeric Values in Palm Debugger

Hex value Decimal value Binary value
64 or $64 #100 291100100
F5 or $F5 #245 241110101
100 or $100 #256 9400000000

Console Window Commands

You use the console window to send commands to the console nub
that is running on the handheld device.

This section provides a description of all of the commands in
alphabetical order. For convenience, the commands are categorized
here:

Table 4.4 Console Window Command Categories

Command category Commands

Card Information
Chunk Utility
Database Utility

Debugging Utility
Gremlin

Heap Utility

Host Control

car df or mat , car di nf 0, and st or ei nf 0.

free,info,lock,newresize, set owner, and unl ock.

cl ose,create,del,dir,export,inport,open,
opened, and set i nf o.

dm gdb, ndebug, and sb.
grenlinandgreninoff.

hel p, | og, and savei mages.

130 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Table 4.4 Console Window Command Categories (continued)

Command category = Commands

Miscellaneous Utility si nsync and sysal ar ndunp.

Record Utility

Resource Utility

addr ecord, del record, det achrecord, fi ndrecord,
| istrecords, noverecord, and setrecordi nfo.

addr esour ce, att achr esour ce, changer esour ce,
del r esour ce, det achresource, |l i stresources,and
setresourcei nf o.

System battery, col dboot ,doze,exi t,feature, kinfo,
| aunch, per f or mance, power on, r eset , sl eep, and
swi tch.
addrecord
Purpose Adds a record to a database.
Usage addrecord <accessPtr> <i ndex> <recordText>
Parameters accessPtr A pointer to the database.
i ndex The index of the record in the database.
recor dText The record data.
addresource
Purpose Adds aresource to a database.
Usage addresource <accessPtr> -t <type> -id <id>
<r esour ceText >
Parameters accessPtr A pointer to the database.
type The type of the resource that you are adding.
id The ID for the resource that you are adding.

r esour ceText The resource data.

Palm OS Programming Development Tools Guide 131

Using the Console Window
Console Window Commands

Purpose

Usage

Parameters

Purpose

Usage

Parameters

attachrecord

Attaches a record to a database.

attachrecord <accessPtr> <recordHandl e> <i ndex>

[opti ons]

accessPtr
r ecor dHandl e

A pointer to the database.

A handle to the record that you are attaching to
the database.

i ndex The index of the record.
opti ons Optional. You can specify the following option:
-r Replaces the existing record with the
same index, if one exists.
attachresource

Attaches a resource to a database.

attachrecord <accessPtr> <recordHandl e> <i ndex>

[opti ons]

accessPtr
r ecor dHandl e

i ndex

opti ons

A pointer to the database.

A handle to the resource that you are attaching
to the database.

The index of the resource.
Optional. You can specify the following option:

-r Replaces the existing resource with the
same index, if one exists.

132 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

battery
Purpose A battery utility command for performing battery operations.
Usage battery [options]

Parameters options Optional. Specifies the battery operation to
perform. Use one of the following values:

—-rStart <deltaSeconds>
Start radio charging in the number of
seconds specified by del t aSeconds.

—r St op
Stop radio charging.

-r Loaded (yes | no)
Set loaded state to yes or no.

Example battery -rStop

cardformat
Purpose Formats a memory card.

Usage cardformat <cardNunt <car dNanme> <manuf Nane>
<r antt or eNane>

Parameters car dNum The card number.
car dNane The name to associate with the card.
manuf Nanme The manufacturer name to associate with the
card.

r antst or eName The RAM store name to associate with the card.

Palm OS Programming Development Tools Guide 133

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Example

Purpose
Usage

Parameters

Purpose

Usage

cardinfo

Displays information about a memory card.

cardi nf o <car dNun®

car dNum The card number about which you want
information. You can use 0 to specify the built-
in RAM.

cardinfo O

Name: Pal nCard

Manuf: Palm Inc

Ver si on: 0001
CreationDate: B1243780
ROM Si ze: 00118FFC
RAM Si ze: 00200000
Free Bytes : 0015ACB2
Nunmber of heaps: #3

changerecord
Replaces a record in a database.

changerecord <accessPtr> <i ndex> <recordText >

accessPtr A pointer to the database.

i ndex The index of the record in the database.
recor dText The new record data.
changeresource

Replaces a resource in a database.

changer esour ce <accessPtr> <i ndex> <recordText >

134 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Parameters

Purpose
Usage

Parameters

Purpose
Usage
Parameters

Comments

Example

accessPtr A pointer to the database.
i ndex The index of the resource in the database.
r esour ceText The new resource data.

close
Closes a database.
cl ose <accessPtr>

accessPtr A pointer to the database.

coldboot

Initiates a hard reset on the handheld device.
col dboot

None

Use the col dboot command to perform a hard reset of the
handheld device. A hard reset erases all data on the device,
restoring it to its new condition.

The handheld device requires confirmation of this operation. You
are prompted to press the Up button on the device to confirm that
you want to perform a hard reset, or press any other button to
cancel the operation.

col dboot

Palm OS Programming Development Tools Guide 135

Using the Console Window
Console Window Commands

create
Purpose Creates a new database on the handheld device.
Usage create <cardNunme <nane> [opti ons]

Parameters car dNum The card number whose databases you want
listed. You almost always use 0 to specify the
built-in RAM.

nane The name for the new database on the
handheld device.

opti ons Optional. Specifies information about the new
database:

-t <type>
The 4-character database type identifier.

-C <creator>
The 4-character database creator ID.

-V <version>
The database version number.

-r Specify to indicate that the database is a
resource database.

Comments Use the create command to create a new record or resource database
on the handheld device.

del

Purpose Deletes a database from the handheld device.

Usage del <cardNunp <fil eNane>

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

136 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Comments

Result

Example

Purpose
Usage

Parameters

Comments

Purpose
Usage

Parameters

fil eNanme The name of the database on the handheld
device. Note that you must quote the database
name if it contains spaces.

Use the del command to delete a database from the specified card
on the handheld device.

You can get a list of the databases on the device with the dir
command.

You cannot delete an open database.

If the database you want to delete is not found or is currently
opened, you receive an error message.

del 0O birds. pdb

Success!!

delrecord
Deletes a record from a database.
del record <accessPtr> <i ndex>

accessPtr A pointer to the database.
i ndex The index of the record in the database.

Use the del r ecor d command to delete the record at the specified
i ndex value from the database specified by accessPtr.

delresource
Deletes a resource from a database.
del resource <accessPtr> <i ndex>

accessPtr A pointer to the database.

i ndex The index of the resource in the database.

Palm OS Programming Development Tools Guide 137

Using the Console Window
Console Window Commands

Comments

Purpose
Usage

Parameters

Comments

Purpose
Usage

Parameters

Comments

Purpose
Usage

Parameters

Use the del r esour ce command to delete the resource at the
specified i ndex value from the database specified by accessPtr.

detachrecord
Detaches a record from a database.
det achrecord <accessPtr> <i ndex>

accessPtr A pointer to the database.

i ndex The index of the record in the database.

Use the det achr ecor d command to detach the record at the
specified i ndex value from the database specified by accessPtr.

detachresource
Detaches a resource from a database.
det achr esour ce <accessPtr> <i ndex>

accessPtr A pointer to the database.

i ndex The index of the resource in the database.

Use the det achr esour ce command to detach the resource at the
specified i ndex value from the database specified by accessPtr.

dir
Displays a list of the databases on the handheld device.
dir (<cardNunp| <searchQOptions>) [<displayOptions>]

car dNum The card number whose databases you want

listed. You almost always use 0 to specify the
built-in RAM.

138 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

searchOpti ons Optional. Options for listing a specific
database. Specify any combination of the
following flags.

-c <creatorlD>
Search for a database by creator ID.

- | at est
List only the latest version of each
database.

-t <typel D>
Search for a database by its type.

di spl ayOpti ons Optional. Options for which information is
displayed in the listing. Specify any
combination of the following flags.

-a Show all information.
-at Show the database attributes.

-d Show the database creation,
modification, and backup dates.

- Show the database applnfo and sortinfo
field values.

-id Show the database chunk ID

-S Show the database size

-m Show the database modification number.
-n Show the database name.

-r Show the number of records in the
database.

-tc Show the database type ID and creator
ID.

-V Show the database version number.

Comments Use the di r command to display a list of the databases on a specific
card or in the handheld device built-in RAM. You typically use the

Palm OS Programming Development Tools Guide 139

Using the Console Window
Console Window Commands

Example

Purpose
Usage

Parameters

Example

following command to list all of the databases stored in RAM on the
handheld device:

dir O

Or use the -a switch to display all of the information for each
database:

dir 0 -a
dir 0
name 1D t ot al dat a
*System 00D20A44 392.691 Kb 390.361 Kb
* AMX 00D209C4 20.275 Kb 20. 123 Kb
*Ul AppShel | 00D20944 1.327 Kb 1.175 Kb
* PADHTAL Li brary 00D208E2 7.772 Kb 7.674 Kb
*1rDA Library 00D20876 39.518 Kb 39. 402 Kb
Mai | DB 0001817F 1.033 Kb 0.929 Kb
Net wor kDB 0001818B 0.986 Kb 0.722 Kb
System M DI Sounds 000181B3 1. 066 Kb 0. 842 Kb
Dat ebook DB 000181FB 0. 084 Kb 0. 000 Kb
Total : 41
dm

Displays a range of memory values.
dm <addr > [<count >]

addr The starting memory address to be displayed.

count The number of bytes to be displayed. If this is
omitted, eight bytes of data are displayed.

dm 0000f 000

0000F000: 00 00 00 00 OO0 OO 00O 00 00 OO OO 00 00 0O 0O OO0

140 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Purpose

Usage

Parameters

Example

Purpose
Usage

Parameters

Purpose

Usage

Parameters

doze

Instructs the handheld device’s CPU to sleep while maintaining the
peripherals and the clock.

doze [options]

opti ons You can optionally specify the following flags:
-1ight

The handheld device will awaken in
response to any interrupt.

doze -1light

exit

Exits the debugger.

exit

None.

export

Copies a Palm OS database from the handheld device to the desktop
computer.

export <cardNune <fil eNanme>

car dNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

fil eName The name of the database on the handheld

device. Note that you must quote the database
name if it contains spaces.

Palm OS Programming Development Tools Guide 141

Using the Console Window
Console Window Commands

Comments Use the export command to copy a database from the handheld
device to your desktop computer. You can get a list of the databases
on the device with the dir command.

If the database contains resources, it is copied in standard PRC
format; if the database contains records, it is copied in standard PDB
format. Note that these two formats are actually identical.

The exported file is stored in the Devi ce subdirectory of the
directory in which Palm Debugger executable is stored.

The exported file is named f i | eNane, with no added extensions.

Example export 0 “Text to Hex”

Exporting resource 'code' =0....
Exporting resource 'data' =0....
Exporting resource 'pref'=0....
Exporting resource 'rloc'=0....
Exporting resource 'code' =1...
Exporting resource 'tFRM =1000. ..
Exporting resource 'tver'=1....
Exporting resource 'tAlIB =1000....
Exporting resource ' Tbnp' =1000. ...
Exporting resource ' Tbnp' =1001. ...
Exporting resource ' MBAR =1000. ...
Exporting resource 'Talt'=1000....
Exporting resource 'Talt'=1001....
Success!

feature
Purpose Accesses features.

Usage feature [options]

142 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Parameters

Example

Purpose
Usage

Parameters

options

feature -all

ROM creator

' psys'

' psys'
RAM creator

' psys'

' psys'
psys
net |’
irda'

Optional. You can use the following options:

-all

Displays a list of all known features

—unreg <creator> <nune

- get

-set

nunber
#1
#2

nunber
#3
#4
#7
#0
#0

feature -get psys 3

Val ue = 00000001

findrecord

Finds a record by ID.

Unregisters the specified feature

<creat or> <nunv
Displays the value of a feature

<creator> <nun® <val ue>
Sets the value of a feature.

val ue

03003000
00010000
val ue

00000001
00000001
00000001
02003000
03003000

findrecord <accessPtr> <ijd>

accessPtr
id

A pointer to the database.

The unique record ID.

Palm OS Programming Development Tools Guide 143

Using the Console Window
Console Window Commands

free
Purpose Disposes of a chunk.
Usage free (<hexChunkPtr> | |ocallD>) [options]

Parameters hexChunkPtr or |ocallD
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <car dNun»
The card number if a local ID is specified
instead of a chunk pointer.

gdb

Purpose Enables or disables gdb debugging
Usage gdb [options]

Parameters options Optional. You can specify the following
options:

- enabl e
Enables gdb debugging.

-di sabl e
Disables gdb debugging.

getresource
Purpose Retrieves the specified resource.
Usage getresource -t <type> -id <id>

Parameters type The type of resource that you want to retrieve.
id The ID of the resource that you want to retrieve.

144 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Purpose
Usage
Parameters

Example

Purpose
Usage

Parameters

Example

gremlin
Activates a Gremlin until the specified event occurs.

gremin <nune <until >

num The number of the Gremlin to activate.
until The event that deactivates the Gremlin.
gremlinoff

Deactivates the current Gremlin.

grenl i nof f
None
grem i noff
hc

Compacts a memory heap.

hc <heapl d>

heapl d The hexadecimal number of the heap to be
compacted. Heap number 0x0000 is always
the dynamic heap.

hc 0002

Heap Conpact ed

Palm OS Programming Development Tools Guide 145

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Example

Purpose

Usage

Parameters

Comments

Example

hchk

Checks the integrity of a heap.
hchk <heapl d> [opti ons]

heapl d The hexadecimal number of the heap whose
contents are to be checked. Heap number
0x0000 is always the dynamic heap.

options Optional. You can specify the following option:
—C Check the contents of each chunk.

hchk 0000
Heap OK

hd

Displays a hexadecimal dump of the specified heap.
hd <heapl d>

heapl d The hexadecimal number of the heap whose
contents are to be displayed. Heap number
0x0000 is always the dynamic heap.

Use the hd command to display a dump of the contents of a specific
heap from the handheld device. You can use the hl command to
display the heap IDs.

hd 0

Di spl ayi ng Heap I D. 0000, napped to 00001480
req act
resType/ #reslD
start handl e localID size size Ick own flags type
i ndex attr ctg wuniquel D nanme

- 00001534 00001494 FO0001495 000456 00045E #0 #0 fM
Gaffiti Private

146 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

-00001992 00001498 F0001499 000012 00001A #0 #0 fM

Dat aMgr Protect List (DnProtectEntryPtr*)

- 000019AC 00001490 F0001491 OOOO1lE 000026 #0 #0 fMA arm
Tabl e

-000019D2 0000148C F000148D 000038 000040 #0 #0 fM
*00001A12 0000149C F000149D 000396 O0039E #2 #1 fM Form

“3:03 pnt

*00001DB0O 000014A0 FOOO14A1 00049A 0004A2 #2 #0 fM
00002252 -------- F0002252 00002E 00003E #0 #0 FM
00002290 -------- F0002290 OOEC40 OOEC50 #0 #0 FM
-00010EEO -------- FOO10EEO 000600 000608 #0 #15 fM

St ack: Consol e Task

000114E8 -------- FOO114E8 O0O0OFF8 001008 #0 #0 FM
-000124F0 -------- FO0124F0 001000 001008 #0 #15 fM
-00017D30 -------- FO017D30 00003C 000044 #0 #15 fM
SysAppl nfoPtr: AMX

-00017D74 -------- FO0017D74 000008 000010 #0 #15 fM
Feat ure Manager d obals (Ftrd obal sType)

-00017D84 -------- FO0017D84 000024 00002C #0 #15 fM
DmOpenl nfoPtr: ' Update 3.0. 2

-00017DBO -------- FO017DBO OOOOOE 000016 #0 #15 fM
DmOpenRef: ' Update 3.0.2'

-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15 fM
Handl e Tabl e: ' GcUpdate 3.0.2'

-00017FC2 -------- FO017FC2 000024 00002C #0 #15 fM
Dnpenl nfoPtr: ' OcUpdate 3.0.2'

-00017FEE -------- FOO17FEE OOOOOE 000016 #0 #15 fM

DnpenRef: ' GcUpdate 3.0. 2'

Heap Sunmary:
fl ags: 8000
si ze: 016B80
nurmHandl es: #40
Free Chunks: #14 (010C50 byt es)
Movabl e Chunks: #51 (O05E80 byt es)
Non- Movabl e Chunks: #0 (000000 byt es)

Palm OS Programming Development Tools Guide 147

Using the Console Window
Console Window Commands

Purpose

Usage

Parameters

Example

Purpose

Usage

Parameters

Example

Purpose
Usage

Parameters

help
Displays a list of commands or help for a specific command.

hel p
hel p <command>

conmand The name of the command for which you want

help displayed.

hel p hchk

Do a Heap Check.
Synt ax: hchk <hex heapl D> [options...]
-C . Check contents of each chunk

hf

Allocates almost all of the free bytes in a heap, reserving the
specified amount of free space.

hf <heapl d> <freeBytes>

heapl d The hexadecimal number of the heap. Heap
number 0x0000 is always the dynamic heap

freeBytes The number of bytes to leave unallocated.

hf 0000 20

hi

Initializes the specified memory heap.
hi <heapl d>

heapl d The hexadecimal number of the heap to be
initialized. Heap number 0x0000 is always the

dynamic heap.

148 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Example hi 0006
hi
Purpose Displays a list of memory heaps.
Usage hl <cardNunp
Parameters car dNum The card number on which the heaps are
located. You almost always use O to specify the
built-in RAM.
Comments Use the hl command to list the memory heaps in built-in RAM or
on a card.
Example hl 0
i ndex heapl D heapPtr si ze free maxFree flags
0 0000 00001480 00016B80 00010C50 OO0OECAS 8000
1 0001 1001810E 001E7EF2 0014AD6A 00147D3A 8000
2 0002 10008212 00118DEE 0000A01C 0000A014 8001
hs
Purpose Scrambles the specified heap.
Usage hs <heapl d>
Parameters heapld The hexadecimal number of the heap to be
scrambled. Heap number 0x0000 is always the
dynamic heap.
Comments Scrambling a heap moves its contents around. You can use this to
verify that the program is using handles in the prescribed manner.
Example hs 0002

heap scranbl ed

Palm OS Programming Development Tools Guide 149

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Comments

Example

Purpose
Usage

Parameters

ht

Displays summary information for the specified heap.
ht <heapl d>

heapl d The hexadecimal number of the heap to be
scrambled. Heap number 0x0000 is always the
dynamic heap.

The ht command displays the summary information that is also
shown at the end of a heap dump generated by the hd command.

ht 0000
Di spl ayi ng Heap |1 D: 0000, rmapped to 00001480

Heap Sunmary:

fl ags: 8000

si ze: 016B80

nunHandl es: #40

Free Chunks: #14 (010CAA byt es)

Movabl e Chunks: #48 (O05E26 byt es)

Non- Movabl e Chunks: #0 (000000 byt es)
htorture

Tortures a heap to test its integrity.
ht ort ure <heapl d> [opti ons]

heapl d The hexadecimal number of the heap to be
tortured. Heap number 0x0000 is always the
dynamic heap.

options Optional. You can specify a combination of the
following options:

—C Checks the contents of every chunk.

—f <nunber >
Reports if the heap is filled beyond the
specified percentage. The default is 90
percent.

150 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Comments

Purpose

Usage

Parameters

Comments

-1 <fil ename>
Specifies the name of the log file

—m <hexSi ze>
The maximum chunk size. The default
value is 0x400.

-p <l evel >
The progress level to display. Specify a
number between 0 (minimum detail)
and 2 (maximum detail). The default
value is O.

Use the ht or t ur e command to torture-test a memory heap. You
can specify a logging file to which the output of the test is sent. You
can also use the - p command to control how progress is displayed.

import

Copies a Palm OS database from the desktop computer to the
handheld device.

i nport <cardNun» <fil eNanme>

car dNum The card number on which the database is to be
installed. You almost always use 0 to specify
the built-in RAM.

fil eName The name of the file on the desktop computer.
You can specify an absolute file name path, or a
relative file name path.

The default search path is the Devi ce
subdirectory of the directory in which Palm
Debugger executable is stored.

Use the i mport command to load a new version of your
application or database onto the handheld device.

Palm OS Programming Development Tools Guide 151

Using the Console Window
Console Window Commands

Result

Example

This command provides a more convenient install operation and
has the same functionality as the installer tool provided with the
HotSync Manager application.

The name of the database on the handheld device is the name stored
in the file, and is not the same as the file name. If a database with a
matching name is already open on the handheld device, an error is
generated. If a database with a matching name is already stored on
the handheld device, that database is deleted and replaced by the
file.

If a database with a matching name is currently open on the
handheld device, the dnEr r Al r eadyExi st s error code (0x0219)
is generated.

i mport O Tex2HexApp. prc

Creating Database on card O
name: Text to Hex
type appl, creator TxHx

| mporting resource 'code' =0...

I mporting resource 'data' =0...

I mporting resource 'pref'=0....

| mporting resource 'rloc'=0....

| mporting resource 'code' =1....

| mporting resource 'tFRM =1000. ..
I nporting resource 'tver'=1...

| mporting resource 'tAlB =1000...
| mporting resource ' Thnp' =1000. ...
| mporting resource ' Thnp' =1001. ...
| mporting resource ' MBAR =1000.. ..
I mporting resource 'Talt'=1000....
| mporting resource 'Talt'=1001....
Success!

152 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Purpose
Usage

Parameters

Comments

info
Displays information about a memory chunk.
i nfo (<hexChunkPtr> | |ocallD>) [options]

hexChunkPtr or locallID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

—card <car dNune
The card number if a local ID is specified
instead of a chunk pointer.

kinfo
Displays a list of all system kernel information.
kinfo [options]

options Optional. Specify the kernel information that
you want to see displayed. Use a combination
of the following flags:

-al |

Display all kernel information.
—task (<id> | all)

Display task information.
—sem (<id> | all)

Display semaphore information.
—tmr (<id> | all)

Display timer information.

Use the ki nf o command to display a list of system kernel
information, including tasks, semaphores, event groups, and timers.

Palm OS Programming Development Tools Guide 153

Using the Console Window
Console Window Commands

Example kinfo -all
Task | nformation
t askl D tag priority
000176EA AMX # 0
000178BE psys # 30
0001795A CONS # 10

Semaphore | nformation

sem D tag

000177EE MenmM
00017822 Sl kM
0001788A SndM

type

resource
counting
counting

stackPtr status

00017556 Idle: Waiting for Trigger

00013364 VWaiting on event tiner

0001103E Runni ng
i nitValue curVal ue nesting owner | D
#-1 #1 (free) #0 00000000
#1 #1 (avail.) #0 00000000
#1 #1 (avail.) #0 00000000
#0 #0 (unavail.) #0 00000000

00017A5E SerM

Ti mer Information:
tmr I D tag

000177BA psys

Purpose

Usage

Parameters

counting

ticksLeft

launch

peri od procPtr

10C6C618

Launches an application on the handheld device.

launch [-t] [-ns] [-ng] <cardNunm> <nanme> [<cnd>
<cmdStr>

-t

-ns

-ng

car dNum

name
cnd

cndStr

Launches the application as a separate task.
Use the caller’s stack.
Use the caller’s globals environment.

The card number on which application is
located. You almost always use 0 to specify the
built-in RAM.

The name of the application to be launched.

Optional. Use to specify a command for the
application.

Optional. Use to specify an arguments string
for cnd.

154 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Purpose
Usage

Parameters

Purpose
Usage

Parameters

listrecords
Lists the records in a database.
| i strecords <accessPtr>

accessPtr A pointer to the database.

listresources
Lists the resources in a database.
| i stresources <accessPtr>

accessPtr A pointer to the database.

lock
Locks a memory chunk.
| ock (<hexChunkPtr> | |ocallD>) [options]

hexChunkPtr or locallD
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

—car d <car dNun»
The card number if a local ID is specified
instead of a chunk pointer.

Palm OS Programming Development Tools Guide 155

Using the Console Window
Console Window Commands

log
Purpose Toggles logging of debugger output to a file.

Usage |og <fil eNane>

Parameters fil eNane The name of the file to which debugger output
is sent.

Comments Use the | og command to start or stop logging of debugger output
to a file.

mdebug

Purpose Sets the Memory Manager debug mode, which you can use to track
down memory corruption problems.

Usage ndebug [options]
Parameters options Optional. Specify the kernel information that

you want to see displayed. Use a combination
of the following flags:

—full

Shortcut for full debugging.
—parti al

Shortcut for partial debugging.
—of f

Shortcut to disable debugging.
-a Check/scramble all heaps each time.
-a- Check only the heap currently in use.
-C Check heap(s) on some memory calls.
-ca Check heap(s) on all memory calls.
-c- Do not check heaps.
-f Check free chunk contents.

156 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Comments

Example

Purpose
Usage

Parameters

-f- Do not check free chunk contents.
-mn
Store minimum available free space in

dynamic heap in the global variable
GvenM nDynHeapFr ee.

-m n-

Do not record minimum free space.
-S Scramble heap(s) on some memory calls.
-sa Scramble heap(s) on all memory calls.

-s- Do not scramble heaps.

Use the ndebug command to enable debugging for tracking down
memory corruption problems.

IMPORTANT: The different debug modes enabled by ndebug
can significantly slow down operations on the handheld device.
Full checking is slowest, partial checking is slow, and only
enabling specific options is the fastest.

ndebug -full
Current node = 003A
Every heap checked/scranbl ed per call
Heap(s) checked on EVERY Mem cal |
Heap(s) scranbl ed on EVERY Mem cal |
Free chunk contents filled & checked
M ni mum dynam ¢ heap free space recordi ng OFF

moverecord
Moves a record in the database by changing its index.

nover ecord <accessPtr> <from ndex> <t ol ndex>

accessPtr A pointer to the database.
from ndex The original index of the record in the database.
t ol ndex The new index for the record in the database.

Palm OS Programming Development Tools Guide 157

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Purpose
Usage

Parameters

new

Allocates a new chunk in a heap.

new <heapl d> <hexChunkSi ze> [opti ons]

heapl d

hexChunkSi ze

options

open
Opens a database.
open <car dNun»

car dNum

The hexadecimal number of the heap in which
to allocate a new chunk. Heap number 0x0000
is always the dynamic heap. Note that heapl d
is ignored if you specify the - near option.
The number of bytes in the new chunk,
specified as a hexadecimal number.

Optional. You can specify a combination of the
following options:

—C Fill the chunk contents.

—| ock
Pre-lock the chunk.

-n Make the chunk unmoveable.

—near <ptr>
Allocate the new chunk in the same heap
as the specified pointer. If this option is
specified, the heapl d is ignored.

—0 <ownerl d>
Set the owner of the chunk to the
specified ID value.

<nane> [opti ons]

The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

158 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

name The name of the database.
options Optional. You can specify the following
options:
-r Open the database for read-only access.
-p Leave the database open.
opened
Purpose Lists all of the currently opened databases.
Usage opened
Parameters None.
Example opened
name resDB accessP I D openCnt node
*Gaffiti ShortCuts vyes 0 00017D5C OO01FFET7F 1 0007
*Syst em yes 0 00017FEE 00D20A44 1 0005

Total : 2 databases opened

performance
Purpose Sets the performance level of the handheld device.
Usage performance [options]
Parameters options You can specify the following options:

-b <baud>
Uses the specified <baud> rate to
calculate the nearest clock frequency
value.

—d <duty>
Set the CPU duty cycle. The <duty>
value specifies the number of CPU cycles
out of every 31 system clock ticks.

Palm OS Programming Development Tools Guide 159

Using the Console Window
Console Window Commands

Purpose
Usage
Parameters

Example

Purpose
Usage
Parameters

Comments

Example

—f <freq>
Set the system clock frequency to the
specified Hz value; select the nearest
baud multiple as the frequency.

—ff <freg>
Set the system clock frequency to the
specified Hz value; do not pick the
nearest baud multiple.

poweron

Powers on the handheld device.
power on

None.

power on

reset

Performs a soft reset on the handheld device.
reset

None.

This command performs the same reset that is performed when you
press the recessed reset button on a Palm Powered handheld device.

reset
Resetting system

160 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Purpose

Usage

Parameters

Purpose
Usage

Parameters

Purpose
Usage

Parameters

resize
Resizes an existing memory chunk.

resi ze (<hexChunkPtr> | |ocallD>) <hexNewSi ze>
[opti ons]

hexChunkPtr or locallD
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

hexNewSi ze The new size of the chunk, in bytes.
opti ons Optional. You can specify the following
options:

—C Checks and fills the contents of the
resized chunk.

—card <cardNunp
The card number if a local ID is specified
instead of a chunk pointer.

saveimages
Saves a memory card image.
savei nages

None.

sb

Sets the value of a byte in memory.
sb <addr> <val ue>

addr The address of the byte.
val ue The new value of the byte.

Palm OS Programming Development Tools Guide 161

Using the Console Window
Console Window Commands

setinfo
Purpose Sets new information values for a database.

Usage setinfo <cardNun> <dbNanme> [opti ons]

Parameters car dNum The card number on which the database is
located. You almost always use O to specify the
built-in RAM.

dbName The name of the database.
options Options. You can specify a combination of the

following values:

—m <modification>
Sets the modification number for the
database.

—n <name>
Sets the name of the database.

—-v <version>
Sets the version number of the database.

setowner
Purpose Sets the owner ID of a memory chunk.

Usage setowner (<hexChunkPtr> | <l ocal | D>) <owner>
[opti ons]

Parameters hexChunkPtr or |ocallD
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

hexNewSi ze The new size of the chunk, in bytes.
owner The new owner ID for the chunk.

162 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Purpose
Usage

Parameters

options Optional. You can specify the following
options:

—car d <car dNunv»
The card number if a local ID is specified
instead of a chunk pointer. Use O to
specify the built-in RAM.

setrecordinfo
Changes information for a record in a database.

setrecordi nfo <accessPtr> <i ndex> [options]

accessPtr A pointer to the database.
i ndex The index of the record in the database.
opti ons Optional. You can specify a combination of the

following options:

—a <hexAttr>
Sets attribute bit settings for the record.

—u <uni quel d>
Sets unique record ID for the record.

setresourceinfo
Changes information for a resource in a database.

setresourcei nfo <accessPtr> <i ndex> [options]

accessPtr A pointer to the database.
i ndex The index of the resource in the database.
options Optional. You can specify a combination of the

following options:

-t <resType>
Sets resource type for the resource.

-id <resld>
Sets resource ID for the resource.

Palm OS Programming Development Tools Guide 163

Using the Console Window
Console Window Commands

Purpose
Usage

Parameters

Purpose
Usage

Parameters

Purpose
Usage

Parameters

Example

simsync
Simulates a synchronization operation on a specific database.
si msync <accessPtr>

accessPtr A pointer to the database.

sleep
Shuts down all peripherals, the CPU, and the system clock.
sl eep

None.

storeinfo
Displays information about a memory store.
storei nfo <cardNunp

car dNum The card number for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

storeinfo O

ROM St or e:
version: 0001
flags: 0000
name: ROM Store
creation date: 00000000
backup date: 00000000
heap list offset: 00008208
init code offsetl: 00C0D652
init code offset2: 00Cl471E
dat abase dirl D. 0O0D20F7E

164 Palm OS Programming Development Tools Guide

Using the Console Window
Console Window Commands

Purpose

Usage

Parameters

Purpose
Usage

Parameters

RAM St or e:
version: 0001
flags: 0001
name: RAM Store O
creation date: 00000000
backup date: 00000000
heap |ist offset: 00018100
init code offsetl: 00000000
init code offset2: 00000000
dat abase dirl D: 0001811F

switch

Switches the application that is used to provide the user interface on
the handheld device.

swi tch <cardNunm> <nanme> [<cnd> <cndStr>]

car dNum The number of the card on which the user
interface application is stored. You almost
always use 0 to specify the built-in RAM.

nanme The name of the application.

cnd Optional. Use to specify a command for the
application.

cndStr Optional. Use to specify an arguments string
for cnd.

sysalarmdump
Displays the system alarm table.
sysal ar ndunp

None.

Palm OS Programming Development Tools Guide 165

Using the Console Window
Console Command Summary

Example sysal arndunp

alarm card
dat e time r ef seconds dbl D # quiet triged noted

7/29/1999 00: 00 00000000 B3C54A00 OOD1FCF8 4004 false false false
1/ 1/1904 00:00 00000000 00000000 00000000 0000 false false true

unlock
Purpose Unlocks a memory chunk.
Usage unlock (<hexChunkPtr> | |ocallD>) [options]

Parameters hexChunkPtr or locallD
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <car dNunp
The card number if a local ID is specified
instead of a chunk pointer.

Console Command Summary

Card Information Commands

car df or mat Formats a memory card.
cardinfo Retrieves information about a memory card.
storeinfo Retrieves information about a memory store.

166 Palm OS Programming Development Tools Guide

Using the Console Window
Console Command Summary

Chunk Utility Commands

free Disposes of a heap chunk.

info Displays information on a heap chunk.
| ock Locks a heap chunk.

new Allocates a new chunk in a heap.
resize Resizes an existing heap chunk.

set owner Sets the owner of a heap chunk.

unl ock Unlocks a heap chunk.

Database Utility Commands

cl ose Closes a database.

Create Creates a new database.

del Deletes a database.

dir Lists the databases.

export Exports a database to the desktop computer.

i nport Imports a database from the desktop computer.
open Opens a database.

opened Lists all currently opened databases.

setinfo Sets database information, such as its name,

version number, and modification number.

Debugging Utility Commands

dm Displays memory.

gdb Enables or disables Gdb debugging.
ndebug Sets the Memory Manager debug mode.
s

Sets the value of a byte.

Palm OS Programming Development Tools Guide 167

Using the Console Window
Console Command Summary

Gremlin Commands

gremin Activates the specified gremlin until a specified
event occurs.

gremnt i nof f Deactivates the current gremlin.

Heap Utility Commands

hc Compacts a memory heap.

hchk Checks a heap.

hd Displays a dump of a memory heap.

hf_ Allocates all free space in a memory heap,

minus a specified number of bytes.

hi_ Initializes a memory heap.

hl_ Lists all of the memory heaps on the specified
memory card.

hs Scrambles a heap.

ht Performs a heap total.

ht orture Torture-tests a heap.

Host Control Commands

hel p Provides help on the console commands.
| og Starts or stops logging to a file.
savei mages Saves an image of a memory card to file.

Miscellaneous Utility Commands

Si nmsync Simulates a synchronization operation on a
database.

sysal ar ndunp Displays the alarm table.

168 Palm OS Programming Development Tools Guide

Using the Console Window
Console Command Summary

Record Utility Commands
addr ecord Adds a record to a database.

attachrecord Attaches a record to a database.

changer ecord Replaces a record in a database.

delrecord Deletes a record from a database.

det achrecord Detaches a record from a database.

findrecord Finds a record by its unique ID.
listrecords Lists all of the records in a database.
nover ecord Changes the index of a record.

setrecordi nfo Setsrecord information, such as its ID and
attributes.

Resource Utility Commands

addr esour ce Adds a resource to a database.

attachresource Attaches a resource to a database.

changer esour ce Replaces a resource in a database.

del resource Deletes a resource from a database.

det achr esource Detaches a resource from a database.

getresource Retrieves a resource from a database.

| i stresources Lists all resources in a database.

setresourcei nfo Sets resource information, such as its ID and
resource type.

Palm OS Programming Development Tools Guide 169

Using the Console Window
Console Command Summary

System Commands

battery

col dboot

doze

exit

feature

ki nf o
| aunch

per f or nence

ower on

reset

sl eep

switch

Battery utility command for starting or
stopping radio charging, and for setting the
loaded status.

Boots the handheld device.

Puts the CPU to sleep while keeping the
peripherals and clock running on the handheld
device.

Exits the console.

Displays, retrieves, registers, or unregisters
features.

Displays kernel information.
Launches an application.

Sets performance levels, such as the system
clock frequency and CPU duty cycle.

Powers on the handheld device.

Resets the memory system and formats both
cards.

Shuts down all peripherals, the CPU, and the
system clock.

Switches the current user interface application.

170 Palm OS Programming Development Tools Guide

5

Using Palm Reporter

This chapter describes Palm Reporter, which you can use to do trace
analysis of your Palm OS® applications. The following topics are
covered in this chapter:

= “About Palm Reporter” - An introduction to Palm Reporter
concepts

= “Downloading Palm Reporter” on page 172 - How to
download and install the Palm Reporter package

= “Adding Trace Calls to Your Application” on page 173 - How
to add Host Control trace calls to your application

= “Displaying Trace Information in Palm Reporter” on
page 175 - How to open a Palm Reporter session to view the
trace information

= “Troubleshooting Palm Reporter” on page 179 - How to
make sure Palm Reporter is running correctly

About Palm Reporter

Palm Reporter is a trace utility that can be used with Palm OS
Emulator. As an application runs on Palm OS Emulator, it can send
information in real time to Reporter. This information can help
pinpoint problems that might be hard to identify when executing
code step-by-step or when specifying breakpoints. To view the
realtime traces, simply run Reporter at the same time as you run
your application on Palm OS Emulator.

Palm Reporter Features
Palm Reporter has a number of features that make it useful:
< High throughput of trace output, allowing for realtime traces

= Trace output filtering, searching, saving, printing, and
copying
= Display of Trace output through a TCP/IP connection

Palm OS Programming Development Tools Guide 171

Using Palm Reporter
Downloading Palm Reporter

Downloading Palm Reporter

The most recent released version of Palm Reporter is posted on the
internet in the Palm™ developer zone:

http://www.palmos.com/developers

Follow the links from the developer zone main page to the Palm OS
Emulator page to retrieve the released version of Palm Reporter.

Palm Reporter Package Files
The Palm Reporter package includes the following files:

Table 5.1 Files Included in the Palm Reporter Package

File Description
Windows: Report er. exe Main Palm Reporter program
Macintosh: Report er file
Windows: Pal mlr ace. dl | Palm OS Emulator add-on that
Macintosh: Pal mTr aceLi b relays traces to Palm Reporter
TraceTest. prc Sample application containing
HostTrace API calls
Docunent at i on (folder) Palm Reporter documentation,
including:
e Reporter
gui de. ht m
e Reporter

prot ocol . ht m

Installing Palm Reporter

Palm Reporter requires Palm OS Emulator. Place the Pal mlr ace
library (Pal mrrace. dl | or Pal mlraceLi b) in the same folder as
the Palm OS Emulator executable. Emulator will not be able to send
trace information to Reporter if it cannot find and load the

Pal mrr ace library.

The Palm Reporter executable can be located in any folder on your
system; it does not need to be in the same folder as Palm OS
Emulator.

172 Palm OS Programming Development Tools Guide

http://www.palm.com/developers

Using Palm Reporter
Adding Trace Calls to Your Application

Adding Trace Calls to Your Application

Traces are generated by system calls that are recognized by Palm OS
Emulator but ignored by actual handheld devices. These system
calls are listed in host cont r ol . h, which is part of both the Palm
OS SDK and the Palm OS Emulator package. For more information
about the Host Control API, see the book Using Palm OS Emulator.

The Host Control system calls pertinent to tracing are listed in the

following table:

System Call Format

Function Description

voi d Host Tracel nit(void)

voi d Host TraceCQut put T(Ul nt 16
nmod, const char* fnt, .)

voi d Host TraceQut put TL(Ul nt 16
nmod, const char* fnt, .)

voi d Host TraceCQut put B(Ul nt 16
mod, const char* buff, U nt32
| en)

voi d Host TraceQut put VT(Ul nt 16

nmod, const char* fnt, va |ist
var gs)

voi d Host TraceCQut put VTL(Ul nt 16
nod, const char* fnt, va |ist
var gs)

voi d Host TraceC ose(voi d)

Initiate a connection to Reporter

Output a string to Reporter (printf
format)

Output a string to Reporter (printf
format) with an additional line break

Send binary data to Reporter

Output a string to Reporter (vprintf
format)

Output a string to Reporter (vprintf
format) with an additional line break

Close the connection to Reporter

All Host Tr aceQut put functions take an error class identifier as
their first parameter. This parameter allows filtering of traces
according to their origin. Recognized error classes are listed in
Syst emMgr . h. For example, applications should specify the error

class appError C ass.

Palm OS Programming Development Tools Guide 173

Using Palm Reporter
Adding Trace Calls to Your Application

Specifying Trace Strings
Trace strings use the following format:
% <fl ags> <w dt h> <type>

<fl ags>
- Left-justify display (Default is right
justify)
+ Always display the sign character
(Default is to display the sign character
for negative values only)
space Display a space (when a value is
positive) rather than displaying a “+”
sign
Alternate form specifier
<width> Must be a positive number
<type>
% Display a “%” character
S Display a null-terminated string
c Display a character

Id) Display an Int32 value
lu Display a UInt32 value

IX or Ix
Display an Int32 or UInt32 value in
hexadecimal

hd Display an Int16 value
hu Display a UInt16 value

hX or hx
Display an Int16 or UInt16 value in
hexadecimal

NOTE: The following types are not supported for <t ype>: o, e,
E,f,F, g, G,p I ndiu X, orx.

174 Palm OS Programming Development Tools Guide

Using Palm Reporter
Displaying Trace Information in Palm Reporter

Trace Functions in a Code Sample

voi d function(void)

{

unsi gned char theBuffer[256];
unsi gned | ong theU nt32 =
unsi gned short theU ntl6 =
int i;

Host Tracel nit();

Host Tr aceQut put TL(appError C ass,
Host Tr aceQut put TL(appError C ass,
t heUl nt 32) ;

Host TraceCQut put TL(appError C ass,
Host TraceCQut put TL(appError C ass,

Host Tr aceCQut put TL(appError Cl ass,
Host Tr aceCQut put TL(appError C ass,
Host TraceCQut put TL(appError C ass,
Host TraceCQut put TL(appError C ass,

Host Tr aceCQut put TL(appError C ass,
“Hel lo world”);

Host Tr aceCQut put TL(appError Cl ass,
Host TraceCQut put TL(appError C ass,
for

(i =0 ; i < 256 ;

Host Tr aceCQut put B(appError d ass,

i ++) theBuffer[i]

t heBuf f er,

OxXFEDC1234;
OxFE12;

“This is an Int32:7);
unsi gned (lu) [4275835444]=[% u] ",

“ signed (ld) [-19131852]=[%d]”, theUl nt32);
“ hexa (Ix) [fedc1234]=[% x]", theUl nt32);

“This is an Intl16:");

unsi gned (hu) [65042]=[%wu]”, theU nt16);
“ signed (hd) [-494]=[%d]”, theUl nt16);
“ hexa (hX) [FE12]=[%X] ", theU nt16);
“This is a string (s) [Hello world]=[%]",
“This is a char (c) [Al=z[%]", "A);
“This is a buffer:”);

= (unsigned char) i;

256) ;

Host TraceC ose();
}

Displaying Trace Information in Palm Reporter

To view trace information in Palm Reporter, you need to do the
following:

= Add trace calls to your application and build your
application

= Start a Palm Reporter session

Palm OS Programming Development Tools Guide 175

Using Palm Reporter
Displaying Trace Information in Palm Reporter

« Start a Palm OS Emulator session

— Set the Emulator “Tracing Options” to display output to
“Palm Reporter*

— Install your trace-enabled application in the Emulator
session

— Run your trace-enabled application in the Emulator
session

Starting a Palm Reporter Session

To start a Palm Reporter session, run the Repor t er . exe file. After
starting Palm Reporter, you should see an empty window. This
window will serve as a container for other windows which display
the trace information. A new trace window is created for each

Host Tracel nit to Host Tr aceC ose sequence in your trace-
enabled application.

Each Host Tr aceQut put call will send information into the current
trace window. The Host Tr aceCQut put call will fail if there is no
active trace window, which can happen if Reporter is not running
when the Host Tr acel ni t function is called.

Also, a reset in Emulator will close any pending connection. That is,
Emulator will call the Host Tr aced ose function for your
application if you used Host Tr acel ni t to open a trace
connection.

Figure 5.1 shows a Palm Reporter session window.

176 Palm OS Programming Development Tools Guide

Using Palm Reporter
Displaying Trace Information in Palm Reporter

Figure 5.1 Palm Reporter Session Window

ﬁ Palm Reporter - [Application [Emulator] [PID = 317].]

{3';%; File Edt Yiew Window Help _|E’|ﬂ
H S El X — | ¢4 = w A |7

Welcomwe to Palw Beporter wl.1 @ 1999-2000 Palm, Inc. =
Text 1 test - recognized types & formatters

Thi=z iz an Int3Z:
unsigned [lu) [42758354441=[4275835444]
signed [1d) [-19131852]=[-19131852]
hexa [lx) [fedcocliid]l=[fedcliid]
This is an Intle:
unsigned [(hu) [63042]=[63042]
Signed [hd) [-494]=[-494]
hexa [hZ) [FE1Z2]=[FE1lZ]
Thi=z iz an int:
unsigned [u) [6504Z]=[RO04Z] e
signed [d) [-494]=[65042]

hexa [x) [feli]l=[feli]
This iz a string [(s) [Hello world]=[Hello world]
Thi= iz a char () [A]=[2a]
This is a string [(5s) [Hello]l=[Hello world]
Thi=s is a Intl6 [(#8hx) [Ox41]1=[Ox41]
This iz an Int3dZ (#81lx) [Ox4141]=[O0Ox4141] :j
Feady Line: 32 |All traces

Filtering Information in a Palm Reporter
Session

You can control the type of trace information Palm Reporter
displays. You control this information by setting filters. Filters can be
set either globally, by using the Global filters... menu, or for the
current window, by using the Active view filters... menu. By
enabling or disabling the filters, you can choose to view traces sent
by corresponding modules in your application. Global filter settings
are saved when you exit the Palm Reporter session.

Palm OS Programming Development Tools Guide 177

Using Palm Reporter
Displaying Trace Information in Palm Reporter

Using the Palm Reporter Toolbar
Palm Reporter provides a toolbar with the following functions:

Toolbar Function
Icon

= Save the contents of the Reporter window
to afile

5 Print the contents of the Reporter window
Select all of the text in the Reporter

E] window

_ Copy the selected text into the system

)
clipboard

x Clear the contents of the Reporter
window

o Draw a horizontal line across the
Reporter window
Search the Reporter window for specified

4 text

S Search the Reporter window for the next
occurrence of specified text

< Search the Reporter window for the
previous occurrence of specified text

" Set “on top” mode to keep the Reporter
window always visible on the screen
Set filters for the current window only
Set font for the current window only

" Set filters for all new windows

A Set font for all new windows

178 Palm OS Programming Development Tools Guide

Using Palm Reporter
Troubleshooting Palm Reporter

Troubleshooting Palm Reporter

Table 5.2 How to Solve Possible Palm Reporter Problems

Symptom

Solution

You are unable to set the Emulator
“Tracing Options” to display output to
“Palm Reporter”.

The Pal nilr ace library
(Pal mrrace. dl | orPal nifraceLi b
file) doesn’t appear in the folder where

you decompressed the Reporter’s archive.

Nothing appears in the Palm Reporter
session window.

You have checked everything in this
table, and Reporter still isn’t displaying
trace information.

Make sure that the Pal nilr ace library is
in the same folder as the Palm OS
Emulator executable.

Check to see if your system is configured
to “Hide system files.”

Make sure that;

= The Pal nilr ace library
(Pal mrrace. dl | or
Pal mTr aceLi b file) is in the same
folder as the Palm OS Emulator
executable.

= Your application code is calling
Host Tracelnit.

= You are using Palm OS Emulator
version 3.0a4 or later.

= You have set the Emulator
“Tracing Options” to display
output to “Palm Reporter”.

= Your filters are set correctly, and
traces are emitted with the right
modules.

Send a note describing your problem to
reporter @al mcom

Palm OS Programming Development Tools Guide 179

Using Palm Reporter

Troubleshooting Palm Reporter

Table 5.3 Palm Reporter Error Message

Error Message

Problem

Possible Solution

An error occurred while
trying to listen for traces.

An error occurred while
initializing ObjectSet.

An error occurred while
ObjectSet was initializing
TCP/IP.

Cannot load filters
description.

Unable to start a reader
thread.

Unable to start a format
thread.

Default reception port is
already in use.

Framework initialization
failed.

TCP/IP related failure.

The Reporter executable
file was altered.

Reporter could not create
receiver thread.

Reporter could not create
displayer thread.

Check that no other
instance of the Reporter is
running.

Send a note describing
your problem to
reporter @al mcom

Check that TCP/IP
networking is correctly set

up.

Send a note describing
your problem to
reporter @al mcom

Free up system resources.

Free up system resources.

180 Palm OS Programming Development Tools Guide

6

Using the Overlay
Tools

This chapter describes how the PRC-to-Overlay tools can be used to
produce a localized version of an application. The following topics
are covered in this chapter:

= “Using Overlays to Localize Resources”- An overview of
using overlay databases to localize application resources.

= “About the Overlay Tools” on page 183 - An introduction to
the PRC-to-Overlay and Patch Overlay tools.

= “Using the PRC-to-Overlay Function” on page 183 describes
how to create overlay resource databases for localized data.

= “Using the Patch Overlay Function™ on page 186 describes
how to use multiple overlay resource databases with a single
bases application database.

e “PRC20OVL Options Summary” on page 187 lists the
command line options used with PRC2OVL.

= “Using PRC20VL on the Macintosh™ on page 189 contains
special instructions for using PRC2OVL on a Macintosh
system.

Using Overlays to Localize Resources

Palm OS® 3.5 added support for localizing applications through
overlay databases. Each overlay database is a separate resource
database that provides an appropriately localized set of resources
for a single base database (a PRCfile) and a single target locale
(language and country).

Support for overlay databases is provided by Overlay Manager. To
use Overlay Manager, create a base application that has your base
resources (usually English) for your user interface and a separate
overlay database that has the substitutions you want to make for

Palm OS Programming Development Tools Guide 181

Using the Overlay Tools
Using Overlays to Localize Resources

each locale (French, German, Japanese, etc.). When an application
runs on a localized version of Palm OS, Overlay Manager
automatically substitutes localized resources from the appropriate
overlay database at runtime. Alternatively, you can use Data
Manager routine DMOpenDBW t hLocal e() to open a base
database with an arbitrary overlay.

For more information about Overlay Manager and localizing your
applications, see Palm OS Programmer’s Companion.

Overlay Database Names

Each overlay database name contains a locale suffix. A locale consists
of a language indicator and a country code:

= The first two letters indicate the language and must be lower
case.

= The second two letters indicate the country and must be
upper case.

For example, the database name Addr ess Book enUS. PRC
indicates that this is an overlay for the language “English”” and the
country “United States.”

Overlay Specification Resources

Overlay specification resources establish a link between the base
and the overlay databases. They bind resources together and are
important when you have multiple version of the same database
(for example, version 1 and version 2 of an application). Overlay
specifications are required for overlay databases, but optional for
the base database.

Overlay specification resources contain the following information:
= Type information (* ovl y’ for overlay databases)

I D = 1000

Target locale (language and country)

Information about the base database (type, creator,
checksum, etc.)

Information about each overlaid resource. This content
specifies exactly which resources are overlaid. Normally, this

182 Palm OS Programming Development Tools Guide

Using the Overlay Tools
About the Overlay Tools

content consists of replacements for resources in the base, but
it can also specify additional resources that are not in the
base.

About the Overlay Tools

The overlay tools allow you to produce an overlay database that can
be superimposed on top of another so that any requests for the
underlying base database first go through the overlay database.
This allows localization to be performed by placing the localized
(for example, German) data in an overlay for a particular locale (for
example, Germany).

You can edit and distribute the overlay separately from the
underlying database. Because the overlay only needs to contain
localized data, it does not need to include your application code or
other large resources.

Using the PRC-to-Overlay Function

The PRC-to-Overlay function takes a normal resource database
(usually an application) as input and produces an overlay. You can
also give the tool an overlay as input to create a new overlay for a
different locale.

How the PRC-to-Overlay Function Works

The PRC-to-Overlay function takes a single file as input, passes the
file through a set of filters to decide which particular resources
(components of the database) are localizable and should be put in
the overlay. Then, given a particular locale, the tool generates an
overlay file.

Choosing a Locale
A locale consists of a language indicator and a country code:

= The first two letters indicate the language and must be lower
case.

Palm OS Programming Development Tools Guide 183

Using the Overlay Tools
Using the PRC-to-Overlay Function

= The second two letters indicate the country and must be
upper case.

To list the available language and country codes, use the following
command:

prc2ovl -show ocal es

For example, the following command creates an English language
overlay for the country United States (using the default filter set):

PRC2OVL NewApp. prc -locale enUS -0
NewApp_enUS. prc

where:
NewApp. prc Indicates the input file name “NewApp. pr c*

-l ocal e enUS Indicates the language code is “en” for English
and the country code is “US” for United States

-0 NewApp_enUS. prc
Specifies the output file name
“NewApp_enUS. prc*

Modifying the Filter Set

A filter set indicates which particular resources (components of the
database) are localizable and which resources should be put in the
overlay PRC.

To modify the filter set, use the - a, - n, - i, and - e switches:
- a indicates that all resources are to be localized.
- n indicates that no resources are to be localized.

- I includes a particular set of resources (in the list of
localized resources).

- e excludes a particular set.

Each switch operates in the order in which it appears on the
command line. The last switch that matches is the one that is
operated on. For example, the filter set:

-n -i tFRM 1000

184 Palm OS Programming Development Tools Guide

Using the Overlay Tools
Using the PRC-to-Overlay Function

produces an overlay that only contains the single * t FRM 1000’
resource (if it is present in the input), but the filter set:

-a -e tFRM 1000
localizes everything but the * t FRM 1000’ resource.

Default Filters

Recreate the default filters with the following set of parameters:
-a -e CODE -e DATA -e code -e data
-e boot -e extn -e pref

Restricting Resource Matches

You can restrict matches by ID number. For example, if you only
want to localize resource type ‘' BAZZ' with ID 567, specify the
filter set:

-i BAZZ 567

You can also supply ranges in your filter set, as shown in the
following example:

-i BAZZ 567-599

Note: To see which resources are selected in the output, use the - v
(for verbose) switch.

PRC20OVL Example

This example shows the files that are included as part of an
application that needs to be localized.

The NewApp. pr c file contains the application named NewApp
which is written in English. The PRC file contains the following
resources:

e Resource 0: ‘ CODE O, application code

e Resource 1: ‘CODE 1, more application code
e Resource 2: ‘tFRM 1000, application form
e Resource 3: ‘tSTR 1000, Ul strings

Palm OS Programming Development Tools Guide 185

Using the Overlay Tools
Using the Patch Overlay Function

Using the following command:

PRC2OVL NewApp. prc -1l ocal e deDE -0
NewApp_deDE. prc

Creates a German overlay, NewApp_deDE. pr c, which is a file
containing the following resources:

e Resource 0: ‘tFRM 1000, application form
e Resource 1: ‘tSTR 1000, Ul strings

Using the Patch Overlay Function

The Patch Overlay function takes two input files, a base PRCand an
overlay PRC, and outputs a new overlay PRCthat has been modified
so it will work with the given base PRC. This is accomplished by
copying the appropriate data over the overlay resource in the
overlay file, synthesizing necessary data if the base PRC was
stripped.

You specify the Patch Overlay function with the-p swi tch. For
example,

PRC2ZOVL Oi gGermanQvl . prc -c
-p EnglishBase.prc -o Fi xedGermanOvl . prc
where:

OigGermanOvl . prc
Indicates the input overlay PRC filename.

-C Indicates whether to generate a new checksum
for the output overlay PRC.

If you omit the “- ¢ parameter, then PRC2OVL
will copy appropriate data over the overlay
resource in the overlay file, synthesizing
necessary data if the base PRC was stripped,
and will generate a new checksum for the
output overlay PRC.

186 Palm OS Programming Development Tools Guide

Using the Overlay Tools
PRC20OVL Options Summary

If you include the *“- ¢ parameter, then
PRC2OVL will simply generates a new
checksum for the output overlay PRC, without
copying data over the overlay resource in the
overlay PRC.

-p EnglishBase. prc

Indicates this is a Patch Overlay function and
Engl i shBase. pr c is the input base PRC
filename.

-0 Fi xedGermanOvl . prc

Indicates the output overlay PRC filename.

Example

This example shows how you could build two language versions as
separate projects, and generate two language overlays that would
work for a single base:

1.
2.

Build your English language project: Engl i shApp. prc.

Create a second project, where you duplicate the code from
the first project, but change the resources for your desired
localization. For example: Ger manApp. prc.

Use PRC-to-Overlay to generate an English overlay:
Engl i shOvl . prec.

Use PRC-to-Overlay to generate a German overlay:
Ger manQvl . prc.

Use the Patch Overlay function to incorporate the checksums
and overlay resource descriptions from the English
application into the Ger manQvl . pr c, calling it

Fi xedGer manOvl . prc.

As a result, you would have an Engl i shBase. pr ¢ that would
work with two overlay PRCs: Engl i shOvl . prc and
Fi xedGer manOvl . prc.

PRC20VL Options Summary

The following tables list the PRC2OVL command line options. These
options can be specified in any order.

Palm OS Programming Development Tools Guide 187

Using the Overlay Tools

PRC20OVL Options Summary

Table 6.1 PRC20VL Options for the PRC-to-Overlay

Function
Option Description
-h Display help information.
- 0 filename Specify the name of output file.

-show ocal es

-locale |l CC

-a
-Nn

-1 resourcelD(s)

- e resourcelD(s)

List the available language and country codes.

Specify a locale code, where | | indicates the language and
CCindicates the country code.

Specify a filter set that localizes all resources.
Specify a filter set that localizes no resources.

Specify a filter set that includes a particular set of
resources, where resourcelD(s) can be a single resource ID
number (for example, 567) or a range of resource ID
numbers (for example, 567-599).

Specify a filter set that excludes a particular set of
resources, where resourcelD(s) can be a single resource ID
number (for example, 567) or a range of resource ID
numbers (for example, 567-599).

-vor-V Print status information to the screen.

Table 6.2 PRC20VL Options for the Patch Overlay Function

Option Description

-h Display help information.

-C Generate a new checksum for the output
overlay PRC, without copying data over
the overlay resource in the overlay PRC.

-p filename Specify the name of the input base PRC
file.

-0 filename Specify the name of output overlay PRC

file.

188 Palm OS Programming Development Tools Guide

Using the Overlay Tools
Using PRC20OVL on the Macintosh

Getting Help

You can get help when you:
= Run PRC20OVL (or MPWPRC2OVL) without arguments.
= Enter invalid arguments.
= Use - h on the command line.

Help lists the default resource selection filters.

Using PRC20VL on the Macintosh

This section describes how to use PRC20OVL on a Macintosh
graphical user interface (GUI).

Opening a PRC file

You can use the Mac GUI to create an overlay for a PRCfile;
typically the PRC file contains an application or a preference panel.
Open the PRCfile, then pick a target locale (which is the same as the
- | ocal e switch). The application displays the entire list of
resources in the file, using the same default selection criteria, if
necessary, to provide a suggested set of resources to localize. You
can edit these by clicking on the checkbox by each item in the list.
Then you can build an output file by clicking on the Build button.

Selecting Resources

The Mac GUI tool lets you select the resources you want to localize
from a list rather than specifying resources with filters on the
command line. By default, the tool assumes that all resources are
overlaid except those of types * CODE’ , * DATA' ,‘ code’ ,‘ data’,
“boot’,*extn’ ,and "’ pref’ . (You can select other resources via
the filter options you use in the command-line tool.)

Palm OS Programming Development Tools Guide 189

A

Resource Tools

There are two tools provided with the Metrowerks CodeWarrior
environment that you can use to work with resources:

= Use the Rez tool to compile a textual description of the
resources for your application into a resource file.

= Use the DeRez tool to decompile a resource file into a text
file.

Both of these tools are standard Apple Computer tools for working
with Macintosh OS application resources. Documentation for both
the Rez and DeRez programs is found in the Apple book Building
and Managing Programs in MPW, 2nd Edition. This book is available
online at the following URL:

http://developer.apple.com/tools/mpw-tools/books.html

Palm OS Programming Development Tools Guide 191

http://developer.apple.com/tools/mpw-tools/books.html

B
Simple Data Types

Table B.1 describes the simple data types, which have been renamed
in the newest release of the Palm OS® software.

Table B.1 Simple Data Types

Old datatype name New datatype name Description

Byt e U nt8 unsigned 8-bit value

UChar unt8 unsigned 8-bit value

SByt e I nt8 signed 8-bit value

I nt I nt 16 signed 16-bit value

Swor d Int 16 signed 16-bit value

Shor t I nt 16 signed 16-bit value

UShor t U ntl6 unsigned 16-bit value

Ul nt U nt 16 unsigned 16-bit value

Wor d U nt1l6 unsigned 16-bit value

Long I nt 32 signed 32-bit value

SDWor d | nt 32 signed 32-bit value

ULong Ul nt 32 unsigned 32-bit value
Dword Ul nt 32 unsigned 32-bit value

Handl e MenmHandl e a handle to a memory chunk
Voi dHand MenHandl e a handle to a memory chunk
Ptr MenPt r a pointer to memory

Voi dPt r MenPt r a pointer to memory

Palm OS Programming Development Tools Guide 193

Index

Symbols

>command 54

A

adding trace calls 173
addrecord command 131
addresource command 131
alias command 55
aliases 31
aliases command 55
application

localizing 181
application locale 183
arithmetic operators 19
assigning values to registers 23
assignment operator 20
atb command 55
atc command 56
atd command 56
atr command 56
att command 57
attachrecord command 132
attachresource command 132

B

basic debugging tasks 22
battery command 133
baud rate

changing in Palm Debugger 47
baud rate, changing 47
BigROM 6
bitwise operators 20
bootstrap command 58
br command 58
brd command 59
break command, debugger 5
breakpoint constants 95
BreakpointType structure 98

C

cardformat command 133
cardinfo command 59, 134

cast operator 19
changerecord command 134
changeresource command 134
cl command 60
close command 135
coldboot command 135
command constants 95
command packets

Continue 99

Find 100

Get Breakpoints 101

Get Routine Name 102

Get Trap Breaks 104

Get Trap Conditionals 105

Message 106

Read Memory 107

Read Registers 108

RPC 109

Set Breakpoints 110

Set Trap Breaks 111

Set Trap Conditionals 112

State 113

Toggle Debugger Breaks 115

Write Memory 116

Write Registers 117
command request packets 92
command response packets 92
command syntax 12
commands

debugger protocol 99
connecting to handheld device 4
console commands 126, 130

addrecord 131

addresource 131

attachrecord 132

attachresource 132

battery 133

cardformat 133

cardinfo 134

changerecord 134

changeresource 134

close 135

coldboot 135

create 136

del 136

delrecord 137

Palm OS Programming Development Tools Guide

195

delresource 137 setresourceinfo 163

detachrecord 138 simsync 164
detachresource 138 sleep 164

dir 138 storeinfo 164

dm 140 switch 165

doze 141 sysalarmdump 165
exit 141 unlock 166

export 141 console stub 122
feature 142 console window 3
findrecord 143 activating input 122
free 144 using 125

gdb 144 constants

getresource 144 breakpoint 95
gremlin 145 debugger protocol command 95
gremlinoff 145 debugging 89

hc 145 packet 94

hchk 146 state 95

hd 146 Continue 99

help 148 converting PRC to overlay 181
hf 148

hi 148 country (_:ode 18_3

hl 149 CPU registers window 3
hs 149 create command 136

ht 150

htorture 150 D

import 151 database commands 28
info 153 db command 60

kinfo 153 DbgBreak 5

launch 154

debugger protocol
breakpoint constants 95
command constants 95

listrecords 155
listresources 155

lock 155 command request packets 92
log 156 command response packets 92
mdebug 156 commands 99

moverecord 157 Continue command 99

Qg\évn 115;38 Find command 100

obened 150 Get Breakpoints command 101

Get Routine Name command 102
Get Trap Breaks command 104
Get Trap Conditionals command 105

performance 159
poweron 160

resgt 160 host and target 91

resize 161 Message command 106
saveimages 161 message packets 92

sb _161 packet communications 92, 94
setinfo 162

packet constants 94
packet structure 92
packet summary 118

setowner 162
setownerinfo 163

196 Palm OS Programming Development Tools Guide

packet types 92

Read Memory command 107

Read Registers command 108

RPC command 109

Set Breakpoints command 110

Set Trap Breaks command 111

Set Trap Conditional command 112
State command 113

state constants 95

Toggle Debugger Breaks command 115
Write Memory command 116
Write Registers command 117

debugger protocol API 91
debugger stub 4
debugging commands

> 54

alias 55

aliases 31, 55

atb 55

atc 56

atd 56

atr 56

att 57

automatic loading of definitions 31
binary numbersin 18
bootstrap 58

br 58

brd 59

cardinfo 59

character constants in 17
cl 60

db 60

decimal numbers in 18
dir 60

dl 62

dm 63

dump 63

dw 64

dx 64

expression operators 19
fb 64

fill 65

fl 65

flow control 25

ft 66

fw 66

g 67

gt 67

hchk 68

hd 68

help 70

hexadecimal numbers in 18

hl 70

ht 71

il 71

info 72

keywords 73

load 73

opened 74

penv 74

reg 75

reset 75

run 76

s 76

save 76

sb 77

sc 77

sc6 78

sc7 78

script files 31

shortcut characters in 22

sizeof 79

sl 79

ss 80

storeinfo 80

structure templates 29

summary 85

sw 81

t 81

templates 82

typedef 82

typeend 83

using expressions in 17

var 83

variables 84

wh 84
debugging conduits

shortcut numbers 6, 123
debugging constants 89
debugging host 91
debugging memory corruption problems 41
debugging target 91
debugging variables 88

Palm OS Programming Development Tools Guide 197

debugging window 3

activating 4

using 15
debugging window commands 53
defining structure templates 30
del command 136
delrecord command 137
delresource command 137
dereference operator 19
detachrecord command 138
detachresource command 138
dir command 60, 138
disassembling memory 24
displaying and disassembling memory 24
displaying memory 24
displaying registers and memory 23
displaying trace information 176
dl command 62
dm command 63, 140
downloading

reporter 172
doze command 141
dump command 63
dw command 64
dx command 64

E

emulator
using reporter 176
entering commands in Palm Debugger 9
error messages
in Palm Debugger 36
exit command 141
export command 141
expression language for Palm Debugger 53
expressions in Palm Debugger 17

F

fb command 64
feature command 142
fill command 65
filter set

localization 184

filtering trace information 177
Find 100

finding code in the debugger 38
finding memory corruption problems 41
finding specific code 38
findrecord command 143
fixing reporter problems 179

fl command 65

flow control commands 25

free command 144

ft command 66

fw command 66

G

g command 67

gdb command 144
GDbgWasEntered 5

Get Breakpoints 101

Get Routine Name 102
Get Trap Breaks 104

Get Trap Conditionals 105
getresource command 144
gremlin command 145
gremlinoff command 145
gt command 67

H

handheld device
connecting with Palm Debugger 4
hc command 145
hchk command 68, 146
hd command 68, 146
heap and database commands 28
heap commands 28
help command 70, 148
hf command 148
hi command 148
hl command 70, 149
host control
adding trace calls 173
using reporter 173
hs command 149
ht command 71, 150

198 Palm OS Programming Development Tools Guide

htorture command 150 about 183

choosing a locale 183
| filter set 184
help 189
Macintosh use 189
option summary 187
patch overlay 186

il command 71
import command 151
importing a database 126

info command 72, 153 PRC20VL 184, 186

PRC-to-overlay 183
K overlay tools 181
keywords command 73
kinfo command 153 P

packet communications 94

L packet constants 94
language indication 183 packet types 92
launch command 154 Palm Debugger 38, 47
listrecords command 155 >command 54
listresources command 155 about 2

addrecord command 131
addresource command 131

address values 14

alias command 55

aliases 31

aliases command 55

and memory corruption problems 41

load command 73
loading debugger definitions 31
local variables

displaying in Palm Debugger 44
localization 181
lock command 155

log command 156 arithmetic operators 19

assigning values to registers 23
M assignment operator 20
mdebug command 156 atb command 55

atc command 56

atd command 56

atr command 56

att command 57
attachrecord command 132
attachresource command 132

memory corruption 41
menus in Palm Debugger 10
Message 106

message packets 92
moverecord command 157

MPWPRC20VL 189 basic tasks 22
battery command 133
N bitwise operators 20
new command 158 bootstrap command 58
br command 58
o) brd command 59
cardformat command 133
open command 158 cardinfo command 59, 134
opened command 74, 159 cast operator 19
operators in debugging commands 19 changerecord command 134
overlay tool changeresource command 134

Palm OS Programming Development Tools Guide 199

cl command 60

close command 135

coldboot command 135
command options 13, 52, 129
command syntax 12, 128
connecting to handheld device 4
console commands 130

console window 3, 125

CPU registers window 3

create command 136

db command 60

debugger environment variables 88
debugging command summary 85
debugging window 3
debugging window commands 53
del command 136

delrecord command 137
delresource command 137
dereference operator 19
detachrecord command 138
detachresource command 138
dir command 60, 138

displaying local variables 44
displaying registers and memory 23
dl command 62

dm command 63, 140

doze command 141

dump command 63

dw command 64

dx command 64

entering commands 9

error messages 36

exit command 141

export command 141
expression language 17, 53

fb command 64

feature command 142

fill command 65

findrecord command 143

fl command 65

flow control commands 25

free command 144

ft command 66

fw command 66

g command 67

gdb command 144

getresource command 144

gremlin command 145
gremlinoff command 145
gt command 67

hc command 145

hchk command 68, 146
hd command 68, 146
heap and database commands 28
help command 70, 148

hf command 148

hi command 148

hl command 70, 149

hs command 149

ht command 71, 150
htorture command 150

il command 71

import command 151

importing system extensions and libraries 48

info command 72, 153
keywords command 73
kinfo command 153
launch command 154
listrecords command 155
listresources command 155
load command 73

lock command 155

log command 156

mdebug command 156
menus 10

moverecord command 157
new command 158
numeric and address values 53, 130
numeric values 14

open command 158
opened command 74, 159
penv command 74
performance command 159
performing calculations 38
poweron command 160
predefined constants 89
reg command 75

register variables 21
repeating commands 38
reset command 75, 160
resize command 161

run command 76

s command 76

save command 76

200 Palm OS Programming Development Tools Guide

saveimages command 161 PRC20OVL 184, 186

sb command 77, 161 help 189

sc command 77 option summary 187
sc6 command 78 PRC-to-OVL tool 181
sc7 command 78

script files 31 R

setinfo command 162
setowner command 162
setrecordinfo command 163

Read Memory 107
Read Registers 108

setresourceinfo command 163 reg command 75
shortcut characters 22 register variables 21
shortcut characters in 38 reporter 171
simsync command 164 about 171
sizeof command 79 adding trace calls 173
sl command 79 downloading 172
sleep command 164 features 171
source debugging limitations 36 filtering information 177
source menu 34 functions 178
source window 3, 32 installation errors 179
ss command 80 installing 172
storeinfo command 80, 164 package file contents 172
structure templates 29 sample code 175
sw command 81 session window 177
switch command 165 toolbar 178
symbol files 33 trace session 176
sysalarmdump command 165 trace strings 174
t command 81 troubleshooting 179
templates command 82 using emulator 176
tips and examples 37 reset command 75, 160
typedef command 82 resize command 161
typeend command 83 resource tools 191
unary operators 19 RPC 109
un_lock command 166 run command 76
using 1
using console and debugging windows 8 S
using the debugging window 15
var command 83 s command 76
variables command 84 save command 76
wh command 84 saveimages command 161
windows 3 sb command 77, 161
Palm reporter 171 sc command 77
patch overlay 186 sc6 command 78
penv command 74 sc7 command 78
performance command 159 script files 31
performing calculations in Palm Debugger 38 Set Breakpoints 110
poweron command 160 Set Trap Breaks 111

Palm OS Programming Development Tools Guide 201

Set Trap Conditionals 112
setinfo command 162
setowner command 162
setownerinfo command 163
setresourceinfo command 163
shortcut characters in Palm Debugger 38
shortcut number 6, 123
shortcut numbers 6, 123
simple data types 193
simsync command 164
sizeof command 79
sl command 79
sleep command 164
SmallROM 5
soft reset 8, 125
source window 3, 32
and symbol files 33
context menu 35
debugging limitations 36
debugging with 33
menu 34
specifying Palm Debugger numeric and address
value 53, 130
specifying Palm Debugger options 52, 129
ss command 80
State 113
state constants 95
storeinfo command 80, 164
structure templates 29
sw command 81
switch command 165
symbol files
using 33
sysalarmdump command 165
SysPktBodyCommon structure 97
SysPktBodyType structure 97

SysPktRPCParamType structure 98

system extensions
importing 48

system libraries
importing 48

T

tcommand 81
templates 29
templates command 82
Toggle Debugger Breaks 115
trace analysis 171
trace strings 174
tracing

sample code 175
tracing applications 171
typedef command 82
typeend command 83

U

unary operators 19
unlock command 166
using reporter 171

Vv

var command 83
variables 88
variables command 84

w

wh command 84
windows

in Palm Debugger 3
Write Memory 116
Write Registers 117

202 Palm OS Programming Development Tools Guide

Palm OS Programming Development Tools Guide 203

	Palm OS® Programming Development Tools Guide
	Table of Contents
	About This Document
	Palm OS Documentation
	What This Volume Contains
	Summary of Changes
	Additional Resources

	Using Palm Debugger
	About Palm Debugger
	Connecting Palm Debugger With a Target
	Connecting to The Palm OS Emulator
	Connecting to The Handheld Device
	Using the Console and Debugging Windows Together

	Entering Palm Debugger Commands
	Palm Debugger Menus
	Palm Debugger Command Syntax

	Using the Debugging Window
	Using Debugger Expressions
	Performing Basic Debugging Tasks
	Advanced Debugging Features

	Using the Source Window
	Debugging With the Source Window
	Using Symbol Files
	Using the Source Menu
	Source Window Debugging Limitations

	Palm Debugger Error Messages
	Palm Debugger Tips and Examples
	Performing Calculations
	Shortcut Characters
	Repeating Commands
	Finding a Specific Function
	Finding Memory Corruption Problems
	Displaying Local Variables and Function Parameters
	Changing the Baud Rate Used by Palm Debugger
	Debugging Applications That Use the Serial Port
	Importing System Extensions and Libraries
	Determining the Current Location Within an Application

	Palm Debugger Command Reference
	Command Syntax
	Specifying Numeric and Address Values
	Using the Expression Language

	Debugging Window Commands
	>
	alias
	aliases
	atb
	atc
	atd
	atr
	att
	bootstrap
	br
	brc
	brd
	cardinfo
	cl
	db
	dir
	dl
	dm
	dump
	dw
	dx
	fb
	fill
	fl
	ft
	fw
	g
	gt
	hchk
	hd
	help
	hl
	ht
	il
	info
	keywords
	load
	opened
	penv
	reg
	reset
	run
	s
	save
	sb
	sc
	sc6
	sc7
	sizeof
	sl
	ss
	storeinfo
	sw
	t
	templates
	typedef
	typeend
	var
	variables
	wh

	Debugging Command Summary
	Flow Control Commands
	Memory Commands
	Template Commands
	Register Commands
	Utility Commands
	Console Commands
	Miscellaneous Debugger Commands
	Debugger Environment Variables
	Predefined Constants

	Debugger Protocol Reference
	About the Palm Debugger Protocol
	Packets
	Packet Structure
	Packet Communications

	Constants
	Packet Constants
	State Constants
	Breakpoint Constants
	Command Constants

	Data Structures
	_SysPktBodyCommon
	SysPktBodyType
	SysPktRPCParamType
	BreakpointType

	Debugger Protocol Commands
	Continue
	Find
	Get Breakpoints
	Get Routine Name
	Get Trap Breaks
	Get Trap Conditionals
	Message
	Read Memory
	Read Registers
	RPC
	Set Breakpoints
	Set Trap Breaks
	Set Trap Conditionals
	State
	Toggle Debugger Breaks
	Write Memory
	Write Registers

	Summary of Debugger Protocol Packets

	Using the Console Window
	About the Console Window
	Connecting the Console Window
	Activating Console Input
	Using Shortcut Numbers to Activate the Windows

	Entering Console Window Commands
	Command Syntax
	Specifying Numeric and Address Values

	Console Window Commands
	addrecord
	addresource
	attachrecord
	attachresource
	battery
	cardformat
	cardinfo
	changerecord
	changeresource
	close
	coldboot
	create
	del
	delrecord
	delresource
	detachrecord
	detachresource
	dir
	dm
	doze
	exit
	export
	feature
	findrecord
	free
	gdb
	getresource
	gremlin
	gremlinoff
	hc
	hchk
	hd
	help
	hf
	hi
	hl
	hs
	ht
	htorture
	import
	info
	kinfo
	launch
	listrecords
	listresources
	lock
	log
	mdebug
	moverecord
	new
	open
	opened
	performance
	poweron
	reset
	resize
	saveimages
	sb
	setinfo
	setowner
	setrecordinfo
	setresourceinfo
	simsync
	sleep
	storeinfo
	switch
	sysalarmdump
	unlock

	Console Command Summary
	Card Information Commands
	Chunk Utility Commands
	Database Utility Commands
	Debugging Utility Commands
	Gremlin Commands
	Heap Utility Commands
	Host Control Commands
	Miscellaneous Utility Commands
	Record Utility Commands
	Resource Utility Commands
	System Commands

	Using Palm Reporter
	About Palm Reporter
	Palm Reporter Features

	Downloading Palm Reporter
	Palm Reporter Package Files
	Installing Palm Reporter

	Adding Trace Calls to Your Application
	Specifying Trace Strings
	Trace Functions in a Code Sample

	Displaying Trace Information in Palm Reporter
	Starting a Palm Reporter Session
	Filtering Information in a Palm Reporter Session
	Using the Palm Reporter Toolbar

	Troubleshooting Palm Reporter

	Using the Overlay Tools
	Using Overlays to Localize Resources
	Overlay Database Names
	Overlay Specification Resources

	About the Overlay Tools
	Using the PRC-to-Overlay Function
	How the PRC-to-Overlay Function Works
	Choosing a Locale
	Modifying the Filter Set
	PRC2OVL Example

	Using the Patch Overlay Function
	PRC2OVL Options Summary
	Getting Help

	Using PRC2OVL on the Macintosh
	Opening a PRC file
	Selecting Resources

	Resource Tools
	Simple Data Types
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

