
Palm OS® Programming
Development Tools Guide

Palm OS® 5 SDK (68K) R3

CONTRIBUTORS

Written by Brian Maas
Engineering contributions by Keith Rollin, Ken Krugler, Jesse Donaldson, Andy Stewart, Kenneth Alban-
owski, and Derek Johnson

Copyright © 1996 - 2003, PalmSource, Inc. and its affiliates. All rights reserved. This documentation may
be printed and copied solely for use in developing products for Palm OS® software. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the foregoing, no
part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation or adaptation) without express written
consent from PalmSource, Inc.

PalmSource, Inc. reserves the right to revise this documentation and to make changes in content from time
to time without obligation on the part of PalmSource, Inc. to provide notification of such revision or
changes.

PALMSOURCE, INC. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR WARRANTIES THAT
THE DOCUMENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR
YOUR USE. THE DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. PALMSOURCE, INC. AND
ITS SUPPLIERS MAKE NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER
IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES,
TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
SATISFACTORY QUALITY. TO THE FULL EXTENT ALLOWED BY LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT,
SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS
OF BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF
OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN IF PALMSOURCE, INC. OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMessenger,
MultiMail, Palm.Net, PalmPak, PalmConnect, PalmGlove, PalmModem, PalmPoint, PalmPrint,
PalmSource, Palm, the Palm logo, MyPalm, PalmGear, PalmPix, PalmPower, AnyDay, EventClub,
HandMAIL, the HotSync logo, Palm Powered, the Palm trade dress, Simply Palm, ThinAir, and WeSync
are trademarks of PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks
or registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT
ACCOMPANYING THE COMPACT DISC.

L

Palm OS Programming Development Tools Guide
Document Number 3011-006
July 9, 2003
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmsource.com
http://www.palmos.com/dev/support/docs/

Palm OS Programming Development Tools Guide iii

Table of Contents
 About This Document xiii

Palm OS Documentation. xiii
What This Volume Contains xiv
Summary of Changes xv
Additional Resources xv

1 Using Palm Debugger 1
About Palm Debugger. 2
Connecting Palm Debugger With a Target 4

Connecting to The Palm OS Emulator 4
Connecting to The Handheld Device 4
Using the Console and Debugging Windows Together 8

Entering Palm Debugger Commands 9
Palm Debugger Menus 10
Palm Debugger Command Syntax 12

Using the Debugging Window 15
Using Debugger Expressions 17
Performing Basic Debugging Tasks 22
Advanced Debugging Features. 29

Using the Source Window 32
Debugging With the Source Window 33
Using Symbol Files 33
Using the Source Menu 34
Source Window Debugging Limitations 36

Palm Debugger Error Messages. 36
Palm Debugger Tips and Examples 37

Performing Calculations 38
Shortcut Characters. 38
Repeating Commands 38
Finding a Specific Function 38
Finding Memory Corruption Problems 41
Displaying Local Variables and Function Parameters 44
Changing the Baud Rate Used by Palm Debugger 47
Debugging Applications That Use the Serial Port 48

iv Palm OS Programming Development Tools Guide

Importing System Extensions and Libraries 48
Determining the Current Location Within an Application . . 49

2 Palm Debugger Command Reference 51
Command Syntax. 51

Specifying Numeric and Address Values 53
Using the Expression Language 53

Debugging Window Commands 53
> . 54
alias . 55
aliases . 55
atb . 55
atc . 56
atd . 56
atr . 56
att . 57
bootstrap . 58
br . 58
brc . 58
brd . 59
cardinfo . 59
cl. 60
db . 60
dir . 60
dl . 62
dm . 63
dump. 63
dw . 64
dx . 64
fb . 64
fill . 65
fl . 65
ft . 66
fw . 66
g . 67

Palm OS Programming Development Tools Guide v

gt . 67
hchk . 68
hd . 68
help . 70
hl . 70
ht . 71
il . 71
info. 72
keywords . 73
load . 73
opened . 74
penv . 74
reg . 75
reset . 75
run . 76
s . 76
save . 76
sb . 77
sc . 77
sc6 . 78
sc7 . 78
sizeof . 79
sl. 79
ss . 80
storeinfo . 80
sw . 81
t . 81
templates . 82
typedef . 82
typeend . 83
var . 83
variables . 84
wh . 84

Debugging Command Summary 85
Flow Control Commands 85

vi Palm OS Programming Development Tools Guide

Memory Commands 85
Template Commands 87
Register Commands 87
Utility Commands 87
Console Commands 87
Miscellaneous Debugger Commands 88
Debugger Environment Variables. 88
Predefined Constants 89

3 Debugger Protocol Reference 91
About the Palm Debugger Protocol 91

Packets . 92
Packet Structure . 92
Packet Communications. 94

Constants . 94
Packet Constants . 94
State Constants . 95
Breakpoint Constants 95
Command Constants 95

Data Structures . 97
_SysPktBodyCommon 97
SysPktBodyType . 97
SysPktRPCParamType 98
BreakpointType . 98

Debugger Protocol Commands 99
Continue . 99
Find . 100
Get Breakpoints . 101
Get Routine Name 102
Get Trap Breaks . 104
Get Trap Conditionals. 105
Message . 106
Read Memory . 107
Read Registers . . 108
RPC . 109

Palm OS Programming Development Tools Guide vii

Set Breakpoints . 110
Set Trap Breaks . 111
Set Trap Conditionals 112
State . 113
Toggle Debugger Breaks 115
Write Memory . . 116
Write Registers. . 117

Summary of Debugger Protocol Packets 118

4 Using the Console Window 121
About the Console Window 121
Connecting the Console Window 122

Activating Console Input 122
Using Shortcut Numbers to Activate the Windows 123

Entering Console Window Commands 125
Command Syntax. . 128

Specifying Numeric and Address Values 130
Console Window Commands 130

addrecord . . 131
addresource . . 131
attachrecord . . 132
attachresource . 132
battery . 133
cardformat . 133
cardinfo . . 134
changerecord . 134
changeresource . 134
close . 135
coldboot . 135
create . . 136
del . 136
delrecord . 137
delresource . 137
detachrecord. . 138
detachresource . . 138

viii Palm OS Programming Development Tools Guide

dir . 138
dm . . 140
doze . 141
exit . . 141
export . 141
feature . 142
findrecord . . 143
free . . 144
gdb. . 144
getresource . 144
gremlin . . 145
gremlinoff . . 145
hc . 145
hchk . 146
hd . 146
help . 148
hf . 148
hi . 148
hl . 149
hs . 149
ht . 150
htorture . . 150
import . 151
info. . 153
kinfo . 153
launch . 154
listrecords . . 155
listresources . . 155
lock . 155
log . 156
mdebug. . 156
moverecord . 157
new . 158
open . 158
opened . 159

Palm OS Programming Development Tools Guide ix

performance . . 159
poweron . 160
reset . 160
resize . . 161
saveimages . 161
sb . 161
setinfo . 162
setowner . 162
setrecordinfo . 163
setresourceinfo. . 163
simsync . . 164
sleep . 164
storeinfo . 164
switch . 165
sysalarmdump. . 165
unlock . 166

Console Command Summary 166
Card Information Commands 166
Chunk Utility Commands 167
Database Utility Commands 167
Debugging Utility Commands 167
Gremlin Commands 168
Heap Utility Commands 168
Host Control Commands 168
Miscellaneous Utility Commands 168
Record Utility Commands 169
Resource Utility Commands 169
System Commands 170

5 Using Palm Reporter 171
About Palm Reporter 171

Palm Reporter Features 171
Downloading Palm Reporter 172

Palm Reporter Package Files 172
Installing Palm Reporter 172

x Palm OS Programming Development Tools Guide

Adding Trace Calls to Your Application 173
Specifying Trace Strings 174
Trace Functions in a Code Sample 175

Displaying Trace Information in Palm Reporter 175
Starting a Palm Reporter Session 176
Filtering Information in a Palm Reporter Session 177
Using the Palm Reporter Toolbar 178

Troubleshooting Palm Reporter. 179

6 Using the Overlay Tools 181
Using Overlays to Localize Resources 181

Overlay Database Names 182
Overlay Specification Resources 182

About the Overlay Tools 183
Using the PRC-to-Overlay Function 183

How the PRC-to-Overlay Function Works 183
Choosing a Locale 183
Modifying the Filter Set 184
PRC2OVL Example. 185

Using the Patch Overlay Function. 186
PRC2OVL Options Summary 187

Getting Help. . 189
Using PRC2OVL on the Macintosh 189

Opening a PRC file 189
Selecting Resources 189

A Resource Tools 191

B Simple Data Types 193

 Index 195

Palm OS Programming Development Tools Guide xi

Palm OS Programming Development Tools Guide xiii

About This
Document
Palm OS® Programming Development Tools Guide describes various
tools you can use to develop software for Palm Powered™
handhelds.

Palm OS Documentation
In addition to this book, you may be interested in the following
Palm OS documentation:

Document Description

Palm OS Programmer’s
API Reference

An API reference document that contains descriptions of all
Palm OS function calls and important data structures.

Palm OS Programmer’s
Companion, vol. I and
Palm OS Programmer’s
Companion, vol. II,
Communications

A guide to application programming for the Palm OS. These
volumes contain conceptual and “how-to” information that
complements Palm OS Programmer’s API Reference.

Using Palm OS Emulator A guide to testing applications with Palm OS Emulator,
including a reference of the Host Control API functions. The
information in this book was previously part of Palm OS
Programming Development Tools Guide.

Testing with Palm OS
Simulator

A guide to testing application with Palm OS Simulator.

Constructor for Palm OS A guide to creating application interfaces using Constructor
for Palm OS.

Palm OS User Interface
Guidelines

A guide describing how to design applications for Palm
Powered handhelds.

About This Document
What This Volume Contains

xiv Palm OS Programming Development Tools Guide

What This Volume Contains
This volume is designed for random access. That is, you can read
any chapter in any order. In general, each chapter covers a different
Palm OS development tool, though chapters 2 through 4 discuss
topics relating to Palm Debugger.

Here is an overview of this volume:

• Chapter 1, “Using Palm Debugger,” on page 1. Provides an
introduction to Palm Debugger, which is an assembly
language and limited source code level debugger for Palm
OS programs. This chapter describes how to use Palm
Debugger, including a description of its expression language
and a variety of debugging strategies and tips.

• Chapter 2, “Palm Debugger Command Reference,” on
page 51. Provides a complete reference description for each
command available in Palm Debugger.

• Chapter 3, “Debugger Protocol Reference,” on page 91.
Describes the API for sending commands and responses
between a debugging host, such as Palm Debugger, and a
debugging target, which can be a Palm Powered handheld
ROM or an emulator program such as Palm OS Emulator.

• Chapter 4, “Using the Console Window,” on page 121.
Describes how the Console Window can be used to perform
maintenance and do high-level debugging of a Palm
handheld device.

• Chapter 5, “Using Palm Reporter,” on page 171. Describes
Palm Reporter, which is a trace utility that can be used with
Palm OS Emulator.

• Chapter 6, “Using the Overlay Tools,” on page 181. Describes
how you can create national language versions of your
application by creating interface overlays.

• Appendix A, “Resource Tools.” on page 191. Provides a short
description of resource tools that can be used to develop
application resources.

• Appendix B, “Simple Data Types.” on page 193. Describes
the simple data type name changes made in recent versions
of the Palm OS software.

About This Document
Summary of Changes

Palm OS Programming Development Tools Guide xv

Summary of Changes
• Chapters from the prior edition of this manual (“Using Palm

OS Emulator” and “Host Control API”) have been moved
from this book into a new manual called Using Palm OS
Emulator. For more information, see the Palm OS
documentation web page.

• Chapter 5, “Using Palm Reporter,” on page 171 has been
updated to include information on the Macintosh version of
Palm Reporter.

Additional Resources
• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Palm OS Programming Development Tools Guide 1

1
Using Palm
Debugger
Palm Debugger is a tool for debugging Palm OS® applications. Palm
Debugger is available for use on both Mac OS and Windows
platforms.

This chapter provides an introduction to and overview of using
Palm Debugger. The commands that you can use are described in
Chapter 2, “Palm Debugger Command Reference.”

This chapter contains the following sections:

• “About Palm Debugger” on page 2 provides a broad
overview of the program and a description of its windows.

• “Connecting to The Handheld Device” on page 4 describes
how to connect Palm Debugger with the Palm OS Emulator
or with a Palm Powered™ handheld device.

• “Using the Console and Debugging Windows Together” on
page 8 describes how to use the menus and keyboard to send
commands to the handheld device from the debugging and
console windows.

• “Using the Debugging Window” on page 15 and “Using the
Source Window” on page 32 describe the command and
display capabilities available in each of these windows. The
debugging window section also includes a full description of
“Using Debugger Expressions” on page 17.

• “Palm Debugger Error Messages” on page 36 describes how
to decode the error messages you receive from Palm
Debugger.

• “Palm Debugger Tips and Examples” on page 37 provides a
collection of tips to make your debugging efforts easier and
examples of performing common debugging tasks.

Using Palm Debugger
About Palm Debugger

2 Palm OS Programming Development Tools Guide

About Palm Debugger
Palm Debugger provides source and assembly level debugging of
Palm OS applications, and includes the following capabilities:

• support for managing Palm OS databases

• communication with Palm™ handheld devices

• communication with Palm OS Emulator, the Palm emulation
program

• command line interface for system administration on Palm
handheld devices

NOTE: You can use Palm Debugger with a Palm Powered
handheld device, or with the Palm OS Emulator program.
Debugging is the same whether you are sending commands to
the emulator or to actual hardware. Connecting with either a
handheld device or the Emulator is described in “Connecting
Palm Debugger With a Target” on page 4.

Palm Debugger provides two different interfaces that you can use to
send commands from your desktop computer to the handheld
device:

• The console interface is provided by the console nub on the
handheld device. You can connect to the console nub and
then send console commands to the nub from Palm
Debugger’s console window. The console commands are
used primarily for administration of databases on the
handheld device.

The console can also be used with Palm Simulator and the
CodeWarrior Debugger, and is documented in a separate
chapter. For more information about the console window
and the console commands, see Chapter 4, “Using the
Console Window.”

• The debugging interface is provided by the debugger nub on
the handheld device. You can attach to the debugger nub and
then send debugging commands to the debugger nub from
Palm Debugger’s debugging window. For more information

Using Palm Debugger
About Palm Debugger

Palm OS Programming Development Tools Guide 3

about using the debugging window and the debugging
commands, see “Using the Debugging Window” on page 15.

The console window and the debugging window each has its own
set of commands that you can use to interface with the handheld
device. The debugging commands are described in Chapter 2,
“Palm Debugger Command Reference,” and the console window
commands are described in Chapter 4, “Using the Console
Window.”

NOTE: The Palm OS Emulator emulates the console and
debugging nubs, which allows Palm Debugger to send the same
commands to the Emulator as it does to a handheld device.

On certain platforms, Palm Debugger also provides a multi-pane
source window for source-level debugging. You can use this
window if you have compiled your program with certain compilers
that generate an appropriate symbol file. Table 1.1 summarizes the
Palm Debugger windows.

Table 1.1 Palm Debugger Windows

Window name Usage

Console Command language shell for performing
administrative tasks, including database
management, on the handheld device.

CPU Registers Assembly language debugging output only
window.

Debugging Assembly language debugging command
window.

Source Source level debugging window.

NOTE: Source level debugging is not
currently available in the Macintosh version of
palm Debugger.

Using Palm Debugger
Connecting Palm Debugger With a Target

4 Palm OS Programming Development Tools Guide

Connecting Palm Debugger With a Target
You can use Palm Debugger to debug programs running on a Palm
Powered handheld device or to debug programs running on a
hardware emulator such as the Palm OS Emulator. This section
describes how to connect the debugger to each of these targets.

Connecting to The Palm OS Emulator
You can interact with the Palm OS Emulator from Palm Debugger
just as you do with actual hardware. With the emulator, you don’t
need to activate the console or debugger stubs. All you need to do is
follow these steps:

1. In the Palm Debugger Communications menu, select
Emulator. This establishes the emulator program as the
“device” with which Palm Debugger is communicating.

2. In the debugging window, type the att command.

Connecting to The Handheld Device
You can interact with the handheld device from Palm Debugger by
issuing commands from the console window or from the debugging
window.

You must activate the console nub on the handheld device before
sending commands from the console window. For more information
on activating console input, see Chapter 4, “Using the Console
Window.”

WARNING! When you activate either the console nub or the
debugger nub on the handheld device, the device’s serial port is
opened. This causes a rapid and significant power drain. The only
way to close the port and stop the power drain is to perform a soft
reset.

Activating Debugging Input

If you are debugging with the Palm OS Emulator, you can activate
debugging input by sending the att command from the debugging
window to the emulator.

Using Palm Debugger
Connecting Palm Debugger With a Target

Palm OS Programming Development Tools Guide 5

To send debugging commands to a hardware device, you must
connect your desktop computer to the handheld device, halt the
device in its debugger nub, and then type commands into the
debugging window of Palm Debugger.

IMPORTANT: When the handheld device is halted in its
debugger nub, a tiny square flashes in the upper left corner of the
screen, and the device does not respond to pen taps or key
presses.

You can use the following methods to halt the handheld in its
debugger nub:

1. Use the to enter debugger mode on the handheld device, as
described in “Using Shortcut Numbers to Activate the
Windows” on page 6.

2. If you have already activated the console nub, you can use
the Break command in the Source menu to activate the
debugger nub. The Break command sends a key command to
the handheld device that is identical to using the sequence.

3. Compile a DbgBreak() call into your application, and run
the application until you encounter that call.
This method only works if you have already entered
debugger mode once, or if you have set the low memory
global variable GDbgWasEntered to a non-zero value,
which tricks the handheld into thinking that the debugger
was previously entered. For example, you can use the
following code in your application to ensure that your break
works:

GDbgWasEntered = true;
DbgBreak();

4. You can hold the down button and press the reset button in
the back of the device.
This halts the device in the SmallROM debugger, which is the
bootstrap code that can initialize the hardware and start the
debugger nub. Enter the g command, and the system jumps

Using Palm Debugger
Connecting Palm Debugger With a Target

6 Palm OS Programming Development Tools Guide

into the BigROM, which contains the same code as the
SmallROM and all of the system code.

If you press the down button on the handheld device while
executing the g command, you land in the BigROM’s
debugger. This lets you set A-trap breaks or single step
through the device boot sequence.

Verifying Your Connection

If Palm Debugger is running and connected when the handheld
device halts into its debugger nub, the debugging window displays
a message similar to the following:

EXCEPTION ID = $A0
'SysHandleEvent'
 +$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001

Alternatively, if Palm Debugger is not connected or running when
the device halts, you can use the att command to attach Palm
Debugger to the device.

IMPORTANT: The debugger nub activates at 57,600 baud, and
your port configuration must match this is you are connecting over
a serial port. You can set the connection parameters correctly
with Palm Debugger Connection menu.

After you activate the debugger nub on the handheld device, the
nub prevents other applications, including HotSync® from using
the serial port. You have to soft-reset the handheld device before
the port can be used.

Using Shortcut Numbers to Activate the Windows

The Palm OS responds to a number of “hidden” shortcuts for
debugging your programs, including shortcuts for activating the
console and debugger nubs on the handheld device. You generate
each of these shortcuts by drawing characters on your Palm
Powered device, or by drawing them in the Palm OS Emulator

Using Palm Debugger
Connecting Palm Debugger With a Target

Palm OS Programming Development Tools Guide 7

program, if you are using Palm OS Emulator to debug your
program.

NOTE: If you open the Find dialog box on the handheld device
before entering a shortcut number, you get visual feedback as
you draw the strokes.

To enter a shortcut number, follow these steps:

1. On your Palm Powered device, or in the emulator program,
draw the shortcut symbol. This is a lowercase, cursive “L”
character, drawn as follows:

2. Next, tap the stylus twice, to generate a dot (a period).
3. Next, draw a number character in the number entry portion

of the device’s text entry area. Table 1.2 shows the different
shortcut numbers that you can use.
For example, to activate the console nub on the handheld
device, enter the follow sequence:

.2

Using Palm Debugger
Connecting Palm Debugger With a Target

8 Palm OS Programming Development Tools Guide

NOTE: These debugging shortcuts leave the device in a mode
that requires a soft reset. To perform a soft reset, press the reset
button on the back of the handheld with a blunt instrument, such
as a paper clip.

Using the Console and Debugging Windows
Together
When Palm Debugger is attached to a handheld device or emulator
program, you cannot talk to the console nub on the device.
However, a subset of the console commands — those that do not

Table 1.2 Shortcut Numbers for Debugging

Shortcut Description Notes

The device enters debugger
mode, and waits for a low-level
debugger to connect. A flashing
square appears in the top left
corner of the device.

This mode opens a serial port, which
drains power over time.

You must perform a soft reset or use the
debugger’s reset command to exit this
mode.

The device enters console
mode, and waits for
communication, typically from
a high-level debugger.

This mode opens a serial port, which
drains power over time.

You must perform a soft reset to exit
this mode.

The device’s automatic power-
off feature is disabled.

You can still use the device’s power
button to power it on and off. Note that
your batteries can drain quickly with
automatic power-off disabled.

You must perform a soft reset to exit
this mode.

.1

.2

.3

Using Palm Debugger
Entering Palm Debugger Commands

Palm OS Programming Development Tools Guide 9

change the contents of memory— are available from the debugging
window. These include the following commands:

• dir

• hl

• hd

• hchk

• mdebug

• reset

You can enter these commands in either the debugging window or
the console window when the debugger nub is active. When you
enter a console command while the debugging window is attached,
the command is sent to the debugger nub rather than the console
nub.

You can use the console commands while debugging for purposes
such as displaying a heap dump in the console window while
stepping through code in the debugging window.

Entering Palm Debugger Commands
Most of your work with Palm Debugger is done with the keyboard.
You enter console commands into the console window, and
debugging commands into the debugging window. Both of these
windows supports standard scrolling and clipboard operations.

Table 1.3 summarizes the keyboard commands that you can use to
enter commands in Palm Debugger’s console or debugging
windows.

Using Palm Debugger
Entering Palm Debugger Commands

10 Palm OS Programming Development Tools Guide

Palm Debugger Menus
Palm Debugger includes five menus, as summarized in Table 1.4.
The most commonly used menu commands are on the Connection
and Source menus; these commands are described in other sections
in this chapter.

Table 1.3 Entering Palm Debugger Commands From the
Keyboard

Command description Windows key(s) Macintosh key(s)

Execute selected text as
command(s). You can select
multiple lines to sequentially
execute multiple commands.

Execute the current line (no text
selected).

ENTER Enter on numeric keypad,
or

CMD+RETURN

Display help for a command Help <cmdName> Help <cmdName>

Enter a new line without
executing the text

SHIFT+ENTER RETURN

Copy selected text from window
to clipboard

CTRL+C CMD+C

Paste clipboard contents to
window

CTRL+V CMD+V

Cut selected text from window to
clipboard

CTRL+X CMD+X

Delete previous command’s
output from the window

CTRL+Z Not available

Delete all text to the end SHIFT+Backspace CMD+DELETE

Using Palm Debugger
Entering Palm Debugger Commands

Palm OS Programming Development Tools Guide 11

Table 1.4 Palm Debugger Menu Commands

Menu Commands Descriptions

File Open
Save
Save As

Page Setup...
Print

Exit

Commands for saving and
printing the contents of a
window.

Edit Undo
Redo

Cut
Copy
Paste
Select All

Find
Find Next

Font

Standard editing commands

Connection (select baud rate)

Handshake

(select connection port)

For setting up how to
communicate with the handheld
device or Palm OS Emulator.

Using Palm Debugger
Entering Palm Debugger Commands

12 Palm OS Programming Development Tools Guide

Palm Debugger Command Syntax
Palm Debugger’s help facility uses simple syntax to specify the
format of the commands that you can type in the console and
debugging windows. This same syntax is used in Chapter 2, “Palm
Debugger Command Reference.” This section summarizes that
syntax.

The basic format of a command is specified as follows:

commandName <parameter>* [options]

commandName The name of the command.

Source Break

Step Into
Step Over
Go
Go Till
Toggle Breakpoint
Disassemble at Cursor
Show Current Location

Install Database and Load Symbols
Load Symbols
Load Symbols for Current Program

Counter
Remove All Symbols

Source code debugging
commands, for use in
conjunction with the source
window.

NOTE: Source level
debugging is not currently
available in the Macintosh
version of Palm Debugger.

Window Cascade
Tile
Arrange Icons
Close All

Keyboard Simulator...

(select numbered window)

Standard window access
commands.

NOTE: Only available on
Windows systems.

Table 1.4 Palm Debugger Menu Commands (continued)

Menu Commands Descriptions

Using Palm Debugger
Entering Palm Debugger Commands

Palm OS Programming Development Tools Guide 13

parameter Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by
the | character.

options Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window
and with the backslash (\) character in the
debugging window.

NOTE: Any portion of a command that is shown enclosed in
square brackets (“[“ and “]”) is optional.

The following is an example of a command definition

dir (<cardNum>|<srchOptions>) [displayOptions]

The dir command takes either a card number of a search
specification, followed by display options.

Here are two examples of the dir command sent from the console
window:

dir 0 -a
dir -t rsrc

And here are the same two commands sent from the debugging
window:

dir 0 \a
dir \t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash (in the console window) or backslash

Using Palm Debugger
Entering Palm Debugger Commands

14 Palm OS Programming Development Tools Guide

(in the debugging window). For example:

-c
-enable
\enable

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\temp\myLogFile
\t Rsrc

Specifying Numeric and Address Values

Many of the debugging commands take address or numeric
arguments. You can specify these values in hexadecimal, decimal, or
binary. All values are assumed to be hexadecimal unless preceded
by a sign that specifies decimal (#) or binary (%). Table 1.5 shows
values specified as binary, decimal, and hexadecimal in a debugging
command:

IMPORTANT: Some register names, like A0 and D4, look like
hexadecimal values. You must preface these values with the
dollar sign ($) character, or you will get the value of the register.
For example, A4 + 3 computes to the value of the A4 register
added with three, but $A4 + 3 computes to $A7.

For more information, see “Specifying Constants” on page 17.

Table 1.5 Specifying Numeric Values in Palm Debugger

Hex value Decimal value Binary value

64 or $64 #100 %01100100

F5 or $F5 #245 %11110101

100 or $100 #256 %100000000

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 15

Using the Debugging Window
You use the debugging window to enter debugging commands,
which are used to perform assembly language debugging of
applications on the handheld device. Commands that you type into
the debugging window are sent to the debugger nub on the
handheld device, and the results sent back from the device are
displayed in the debugging window.

The debugging window provides numerous capabilities, including
the following:

• A rich expression language for specifying command
arguments, as described in “Using Debugger Expressions”
on page 17.

• Ability to debug applications, system code, extensions,
shared libraries, background threads, and interrupt handlers.

• Custom aliases for commands or groups of commands, as
described in “Defining Aliases” on page 31.

• Script files for saving and reusing complex sequences of
commands, as described in “Using Script Files” on page 31.

• Templates for defining data structure layouts in memory,
which allow you to view a structure with the memory
display commands. Templates are described in “Defining
Structure Templates” on page 29.

• Your aliases and templates can be saved in files that are
automatically loaded for you when Palm Debugger starts
execution, as described in “Automatic Loading of
Definitions” on page 31.

This section also provides examples of using some of the more
common debugging commands:

• See “Displaying Registers and Memory” on page 23 for
examples of using the debugging commands to display the
current register values.

• See “Using the Flow Control Commands” on page 25 for
examples of using commands to set breakpoints.

• See “Using the Heap and Database Commands” on page 28
for examples of using commands to examine the heap and
databases.

Using Palm Debugger
Using the Debugging Window

16 Palm OS Programming Development Tools Guide

The remainder of this section describes how to use these
capabilities. Table 1.6 shows the most debugging window command
categories.

All of the debugging commands are described in detail in Chapter 2,
“Palm Debugger Command Reference.”

Before you can use the debugging commands, you must attach Palm
Debugger to the debugger nub on the handheld device, as described
in “Activating Debugging Input” on page 4.

Table 1.6 Debugging Window Command Categories

Category Description Commands

Console Commands shared with the console
window for viewing card, database,
and heap information.

cardinfo, dir, hchck,
hd, hl, ht, info,
opened, storeinfo

Flow Control Commands for working with
breakpoints, A-traps, and program
execution control.

atb, atc, atd, br,
brc, cl, brd, dx, g,
gt, s, t, reset

Memory Commands for viewing the registers,
and for displaying and setting
memory, the stack, and system
function information.

atr, db, dl, dm, dw,
fb, fill, fl, ft, fw,
il, reg, sb, sc, sc6,
sc7, sl, sw, wh

Miscellaneous Commands for displaying debugging
help and current debugging
environment information.

att, help, penv

Template Commands for defining and
reviewing structure templates.

>, sizeof, typedef,
typeend

Utility Commands for working with aliases,
symbol files, and variables.

alias, aliases,
bootstrap, keywords,
load, run, save, sym,
templates, var,
variables

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 17

Using Debugger Expressions
Palm Debugger provides a rich expression language that you can
use when specifying arguments to the debugging commands. This
section describes the expression language.

NOTE: Debugger expressions cannot contain white space.
White space delimits command parameters; thus, any white
space ends an expression.

Specifying Constants

The expression language lets you specify numbers as character
constants.

Character Constants

A character is a string enclosed in single quotes. The string can
include escape sequences similar to those used in the C language.
For example:

'xyz1'
'a\'Y\''
'\123'

Character constants are interpreted as unsigned integer values. The
size of the resulting value depends on the number of characters in
the string, as follows:

Number of characters Result type

1 character UInt8

2 characters UInt16

more than 2 characters UInt32

Using Palm Debugger
Using the Debugging Window

18 Palm OS Programming Development Tools Guide

Binary Numbers

To specify a binary number, use the percent sign (%) character
followed by any number of binary digits. For example:

%00111000
%1010

The size of the resulting value is determined as follows:

Decimal Numbers

To specify a decimal number, use the # character followed by any
number of decimal digits. For example:

#256
#32756

Hexadecimal Numbers

Palm Debugger interprets hexadecimal digit strings that are not
preceded by a special character as hexadecimal numbers. You can
optionally use the dollar sign ($) character to indicate that a value is
hexadecimal. For example:

c123
C123
F0
$A0

The size of the resulting value is determined as follows:

Number of Digits Result Type

1 to 8 UInt8

8 to 16 UInt16

more than 16 UInt32

Number of digits Result type

1 to 2 UInt8

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 19

WARNING! If you want to specify a hexadecimal value that can
also be interpreted as a register name, you must preface the
value with the dollar sign ($) symbol. For example, using A0 in an
expression will generate the current value of the A0 register, while
using $A0 will generate the hexadecimal equivalent of the decimal
value 160.

Using Operators

Palm Debugger expression language includes the typical set of
binary and unary operators, as summarized in Table 1.7.

3 to 4 UInt16

more than 4 UInt32

Number of digits Result type

Table 1.7 Palm Debugger Expression Language
Operators

Type Operator Description Example

Cast .a Casts the value to an address. 0ff0.a

.b Casts the value to a byte. 45.b

.l Casts the value to a double word. 45.l

.w Casts the value to a word. 45.w

.s Extends the sign of its operand without
changing the operand’s size.

45.s

Unary ~ Performs a bitwise NOT of the operand. ~1

- Changes the sign of the operand. 2*-1

Dereference @ Dereferences an address or integer value.
See Table 1.8 for more examples.

@A7

Arithmetic * Multiplies the two operands together. A1*2

Using Palm Debugger
Using the Debugging Window

20 Palm OS Programming Development Tools Guide

The Dereference Operator

The @ dereference operator is similar to the * dereference operator
used in the C programming language. This operators dereferences
an address value, as shown in Table 1.8.

/ Divides the first operand by the second
operand.

21/3

+ Adds the two operands together. A2+2

- Subtracts the second operand from the
first operand.

A2-2

Assignment = Assigns the second operand value to the
register specified as the first operand.

d0=45

Bitwise & Performs a bitwise AND operation. A7&FFF

^ Performs a bitwise XOR operation. A2^F0F0

| Performs a bitwise OR operation. A2|%1011

Table 1.7 Palm Debugger Expression Language
Operators (continued)

Type Operator Description Example

Table 1.8 Dereference Operator Examples

Expression Description Example

@ Retrieves 4 bytes as an unsigned
integer value

@A7

@.a Retrieves 4 bytes as an address @.a(A1)

@.b Retrieves 1 byte as an unsigned
integer value

@.b(PC)

@.w Retrieves 2 bytes as an unsigned
integer value

@.w(PC)

@.l Retrieves 4 bytes as an unsigned
integer value

@.l(A2)

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 21

Register Variables

The expression language provides named variables for each register.
The names of these variables are replaced by their respective
register values in any expression. Table 1.9 shows the register name
variables.

Table 1.9 The Built-in Register Variables

Variable name Description

a0 address register 0

a1 address register 1

a2 address register 2

a3 address register 3

a4 address register 4

a5 address register 5

a6 address register 6

a7 address register 7

d0 data register 0

d1 data register 1

d2 data register 2

d3 data register 3

d4 data register 4

d5 data register 5

d6 data register 6

d7 data register 7

pc the program counter

sr the status register

sp the stack pointer
(this is an alias for a7)

Using Palm Debugger
Using the Debugging Window

22 Palm OS Programming Development Tools Guide

NOTE: The expression parser interprets any string that can
represent a register name as a register name. If you want the
string interpreted as a hexadecimal value instead, precede it with
either a 0 or the dollar sign ($) character.

For example, the following expression:
a0+d0

Adds the values stored in the a0 and d0 registers together.

If you want to add the value 0xd0 to the value stored in register
a0, use one of the following expressions:

a0+0d0

a0+$d0

Special Shortcut Characters

Palm Debugger’s expression language includes the two special
value characters show in Table 1.10. These characters are converted
into values in any expression.

Performing Basic Debugging Tasks
This section describes how to use Palm Debugger to perform three
of the most common debugging tasks:

• displaying memory values

• setting breakpoints and using the flow control commands

• examining the heap

Table 1.10 Special Value Expression Characters

Character Converts into Examples

. The most recently entered address. dm .
dm .+10

: The starting address of the current
routine.

il :
il :+24

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 23

The final section of this chapter, “Palm Debugger Tips and
Examples” on page 37, provides examples of how to perform other
debugging tasks.

Assigning Values to Registers

You can use the assignment operator (=) to assign a value to a
register. However, if you include white space around the operator,
the assignment does not work. For example, the following
statement correctly assigns a value to the program counter:

pc=010c8954

However, this statement does not assign the correct value to the
program counter:

pc = 010c8954c

Displaying Registers and Memory

One of the primary operations you perform with a debugger is to
examine and change values in memory. Palm Debugger provides a
number of commands for displaying registers, memory locations,
the program counter, and the stack. Table 1.11 summarizes the
commands you commonly use to examine memory and related
values.

Table 1.11 Frequently Used Memory Commands

Command Description

db Displays the byte value at a specified address.

dl Displays the 32-bit long value at a specified address.

dm Displays memory for a specified number of bytes or
templates.

dw Displays the 16-bit word value at a specified
address.

il Disassembles code in a specified line range or for a
specified function name.

reg Displays all registers.

sb Sets the value of the byte at the specified address.

Using Palm Debugger
Using the Debugging Window

24 Palm OS Programming Development Tools Guide

Palm Debugger also lets you define structure templates and use
those for displaying memory values. For example, you can define a
structure that matches the layout of a complex data structure, and
then display that structure with a single dm command. For more
information about structure templates, see “Defining Structure
Templates” on page 29.

Listing 1.1 shows an example of displaying memory with the dm
command and disassembling memory with the il command. It also
provides several examples of using expressions with these
commands. In this example, boldface is used to denote
commands that you type, and <= starts a comment.

Listing 1.1 Displaying and Disassembling Memory

dm 0 <=Display memory at address 0
00000000: FF FF FF FF 1A 34 3E 40 10 C0 92 D4 10 C0 92 F2 ".....4>@........"

dm 100 <=Display memory at address 0x100
00000100: 01 01 00 00 02 B0 00 01 78 30 00 00 00 01 47 EE "........x0....G."

dm #100 <=Display memory at address 100 decimal
00000064: 10 C6 BE 32 10 C6 BE 60 10 C6 BE 8E 10 C6 BE BC "...2...`........"

dm 100+20 <=Specify an address with an expression
00000120: 6F BC 00 00 07 22 00 00 00 06 00 01 7D 72 00 FD "o...."......}r.."

dm .+10 <=Use the'.' character for the most recent addr
00000130: 00 00 00 00 00 00 00 B6 3E C0 69 45 A4 0C 03 4A "........>.iE...J"

sc Lists the A6 stack frame chain, starting at the
specified address.

sc7 Lists the A7 stack frame chain, starting at the
specified address.

sl Sets the value of the 32-bit long value at the
specified address.

sw Sets the value of the word at the specified address.

Table 1.11 Frequently Used Memory Commands (continued)

Command Description

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 25

dm pc <=Use the current program counter value
10C0EEFE: 70 01 60 00 01 7E 4E 4F A0 BE 70 01 60 00 01 74 "p.`..~NO..p.`..t"

dm pc+20 <=An expression using the program counter
10C0EF1E: FF F4 4E 4F A0 AC 38 00 4A 44 50 4F 66 2A 48 6E "..NO..8.JDPOf*Hn"

il pc <=Disassemble code at current program counter
'SysHandleEvent 10C0E9EC'
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001
+$0514 10C0EF00 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 017E
+$0518 10C0EF04 _SysLaunchConsole ; $10C0E30C | 4E4F A0BE
+$051C 10C0EF08 MOVEQ.L #$01,D0 | 7001
+$051E 10C0EF0A BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 0174
+$0522 10C0EF0E MOVEQ.L #$00,D0 | 7000
+$0524 10C0EF10 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 016E
+$0528 10C0EF14 CLR.L -$0010(A6) | 42AE FFF0
+$052C 10C0EF18 PEA -$0006(A6) | 486E FFFA
+$0530 10C0EF1C PEA -$000C(A6) | 486E FFF4

il pc-10 <=Display code at program counter - 0x10
'SysHandleEvent 10C0E9EC'
+$0502 10C0EEEE ORI.B #$01,(A5)+ ; '.' | 001D 7001
+$0506 10C0EEF2 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 018C
+$050A 10C0EEF6 MOVE.B #$01,$00000101 ; '.' | 11FC 0001 0101
+$0510 10C0EEFC _DbgBreak | 4E48
+$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001
+$0514 10C0EF00 BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 017E
+$0518 10C0EF04 _SysLaunchConsole ; $10C0E30C | 4E4F A0BE
+$051C 10C0EF08 MOVEQ.L #$01,D0 | 7001
+$051E 10C0EF0A BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 0174
+$0522 10C0EF0E MOVEQ.L #$00,D0 | 7000

All of the commands mentioned in this section are described in
detail in Chapter 2, “Palm Debugger Command Reference.”

Using the Flow Control Commands

Palm Debugger provides a number of commands for setting
breakpoints and continuing the flow of execution. Table 1.12
summarizes the commands you commonly use for these purposes.

Using Palm Debugger
Using the Debugging Window

26 Palm OS Programming Development Tools Guide

Listing 1.2 shows an example of setting breakpoints, disassembling,
and using other flow control commands to debug an application. In
this example, boldface is used to denote commands that you type,
and <= starts a comment.

Table 1.12 Commonly Used Flow Control Commands

Command Description

atb Adds an A-trap break.

atc Clears an A-trap break.

atd Displays all A-trap breaks.

br Sets a breakpoint.

brc Clears a breakpoint. This is the same as the cl
command.

brd Display all breakpoints.

cl Clears a breakpoint. This is the same as the brc
command.

g Continues execution until the next breakpoint is
encountered.

gt Sets a temporary breakpoint at the specified
address, and resumes execution from the current
program counter.

s Single steps one source line, stepping into functions.

ss Step-spy: step until the value of the specified
address changes.

t Single steps one source line, stepping over
functions.

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 27

Listing 1.2 Using the Debugging Flow Control Commands

sc <= Display stack crawl, listed from oldest to newest. In this
<= example, the current fcn was called from EventLoop+0016

Calling chain using A6 Links:
 A6 Frame Caller
 00000000 10C68982 cjtkend+0000
 00015086 10C6CA26 __Startup__+0060
 00015066 10C6CCCE PilotMain+0250
 00014FC2 10C0F808 SysAppLaunch+0458
 00014F6E 10C10258 PrvCallWithNewStack+0016
 00013418 10CD88B2 __Startup__+0060
 000133F8 10CDB504 PilotMain+0036
 000133DE 10CDB47C EventLoop+0016

s <= Single-Step one instruction
'SysHandleEvent' Will Branch
+$0514 10C0EF00 *BRA.W SysHandleEvent+$0694 ; 10C0F080 | 6000 017E

<= Single step again by pressing the ENTER key
+$0694 10C0F080 *MOVEM.L (A7)+,D3-D5/A2-A4 | 4CDF 1C38

<= Press ENTER again
+$0698 10C0F084 *UNLK A6 | 4E5E

<= ... and again
+$069A 10C0F086 *RTS | 4E75 8E53 7973 4861

<= ... and again
+$0018 10CDB47E *TST.B D0 | 4A00

il <= Disassemble at current program counter
'EventLoop 10CDB466'
+$0018 10CDB47E *TST.B D0 | 4A00
+$001A 10CDB480 LEA $000C(A7),A7 | 4FEF 000C
+$001E 10CDB484 BNE.S EventLoop+$0050 ; 10CDB4B6 | 6630
... <= Remainder of disassembly removed here

gt 10cdb484 <= Go-Till address 0x10CDB484
+$001E 10CDB484 *BNE.S EventLoop+$0050 ; 10CDB4B6 | 6630

br :+50 <= Set a breakpoint at current routine+0x50
Breakpoint set at 10CDB4B6 (EventLoop+0050)

g <= Go until a break occurs
+$0050 10CDB4B6 *CMPI.W #$0016,-$0018(A6) ; '..' | 0C6E 0016 FFE8

brd <= Display all currently set breakpoints
10CDB4B6 (EventLoop+0050)

cl <= Clear all breakpoints

Using Palm Debugger
Using the Debugging Window

28 Palm OS Programming Development Tools Guide

All breakpoints cleared

atb "EvtGetEvent" <= Break whenever the EvtGetEvent system trap is called
A-trap set on 011d (EvtGetEvent)

g <= Go until a break occurs
Remote stopped due to: A-TRAP BREAK EXCEPTION
'EvtGetEvent'
+$0000 10C3B1E2 *LINK A6,$0000 | 4E56 0000

atc <= Clear all A-Traps
All A-Traps cleared

ss a2 <= Step-Spy until the UInt32 at address 0x15404 changes
<= (the current value of register A2 is 0x15404)

Step Spying on address: 00015404
'EvtGetSysEvent'
 +$00E8 10C1E980 *CLR.B $0008(A4) | 422C 0008

TIP: Some commands, like the atb command, require that the
operand be quoted. Forgetting to quote the trap name in the atb
command is a common mistake with Palm Debugger.

All of the commands mentioned in this section are described in
detail in Chapter 2, “Palm Debugger Command Reference.”

Using the Heap and Database Commands

You can use the heap and database commands to display
information about the databases and heaps on the handheld device.
These commands, which are summarized in Table 1.13, mirror
commands available from the console window.

Table 1.13 Commonly Used Heap and Database
Commands

Command Description

dir Lists the databases.

hchk Checks a heap.

hd Displays a dump of a memory heap.

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 29

The heap commands take heap ID values as parameters. The
following table shows the values you can use for heap IDs.

All of the commands mentioned in this section are described in
detail in Chapter 2, “Palm Debugger Command Reference.”

To learn more about the console window and all of the console
commands, see Chapter 4, “Using the Console Window.”

Advanced Debugging Features
This section presents several advanced features of the debugging
window of Palm Debugger, including the following:

• defining structure template for displaying memory

• defining aliases for commands

• using script files to run sequences of commands

• automated loading of structure and alias definitions at
program start-up time

Defining Structure Templates

You can define structure templates to use with Palm Debugger’s
memory display commands. Each template matches a data type or
structure type that you use in your application, which lets you
display a structure in the debugging window with one command.

hl Lists all of the memory heaps on the specified
memory card.

ht Performs a heap summary.

Table 1.13 Commonly Used Heap and Database
Commands (continued)

Command Description

Heap ID Description

0 The dynamic heap.

1 The storage heap.

Using Palm Debugger
Using the Debugging Window

30 Palm OS Programming Development Tools Guide

You define templates in a manner similar to the way you define
structure types in a high-level programming language: start a
template definition with the typedef command, follow with some
number of field definition (>) commands, and finish with a
typeend command. And once you have defined a structure
template, you can use fields of that type in other template
definitions.

Table 1.14 summarizes the commands you use to define and display
templates. For more information about these commands, see
Chapter 2, “Palm Debugger Command Reference.”

Note that the structure and field names must be quoted in your
structure template definition commands. Listing 1.3 shows the
debugging commands used to define a template named
PointType, and then defines a second template named
RectangleType that uses two PointType fields.

Listing 1.3 Defining and using two structure templates

typedef struct "PointType"
> Int16 "X"
> Int16 "Y"
typeend

typedef struct "RectangleType"
> PointType "topLeft"
> PointType "extent"
typeend

sizeof PointType

Table 1.14 Structure Template Commands

> Defines a structure field.

sizeof Displays the size, in bytes, of a template.

templates Lists the names of the debugger templates.

typedef Begins a structure definition block.

typeend Ends a structure definition block.

Using Palm Debugger
Using the Debugging Window

Palm OS Programming Development Tools Guide 31

Size = 4 byte(s)

sizeof RectangleType
Size = 8 byte(s)

dm 0 RectangleType
00000000 struct RectangleType
 {
00000000 PointType topLeft
 {
00000000 Int16 x = $-1
00000002 Int16 y = $-1
 }
00000004 PointType extent
 {
00000004 Int16 x = $1A34
00000006 Int16 y = $3E40
 }
 }

Defining Aliases

For convenience, you can create aliases. Each alias stands for a
specific command sequence. For example:

alias "checkheap" "hchk 0 -c"

alias "ls" "dir 0"

After defining these aliases, you can type ls to display a directory
listing for card 0 (built-in RAM), and you can type checkheap to
check heap 0 with examination of each chunk.

Using Script Files

You use the run command to run a script file. A script file is any text
file that contains debugging commands. For example, the following
command reads and executes the debugging commands found in
the text file named MyCommands:

run "MyCommands"

Automatic Loading of Definitions

When Palm Debugger is launched, it automatically runs the script
file named UserStartupPalmDebugger. You can store your

Using Palm Debugger
Using the Source Window

32 Palm OS Programming Development Tools Guide

aliases, script files, and data structure templates in this file to have
them available whenever you use Palm Debugger.

Using the Source Window
This section describes the source window, which you can use to
perform limited debugging with the source code for your
application.

NOTE: Palm Debugger’s source level debugging is only
available on Windows systems, and is only available for code that
has been built using the GNU gcc compiler for Palm OS.

The source window works in conjunction with the debugging and
CPU registers windows. For example, if you single step in the
debugging window, the source window tracks along and displays
any breakpoints that are currently set.

The source window is split into two panes:

• The upper pane displays the values of local variables for the
current function.

• The lower pane displays the source code. This pane is
automatically updated whenever you move through your
code with flow control commands. You can also scroll this
pane to view the code or to set a breakpoint.

The left margin of the lower pane displays indicators for
breakpoints and the current program counter:

– a solid red circle is displayed next to a line that contains a
breakpoint

– a green arrow is displayed next to the line containing the
current program location

The two panes in the source window are separated by a thick
horizontal line. This line is colored red when the connected
handheld device is halted in the debugger nub, and is green when
the handheld device is running code.

Using Palm Debugger
Using the Source Window

Palm OS Programming Development Tools Guide 33

Debugging With the Source Window
To debug with the source code for an executable, you need to
associate a symbol file on your desktop computer with the
executable that is running on the handheld device. You can load any
number of symbol files into Palm Debugger at once; whenever the
device stops in the debugger nub, Palm Debugger automatically
determines which symbol file to display in the source window.

You can use the following steps to load an application and its
symbol file, and then use the source debugging commands:

1. Activate the console nub, as described in “Activating
Console Input” on page 122.

2. Select Install Database and Load Symbols from the Source
menu.

3. Select the PRC file to load onto the device.
4. Palm Debugger imports the PRC file into the handheld device

and looks in the same directory for the associated symbol file.
Palm Debugger now associates the symbol file with the application
that has been imported into the handheld device. Whenever the
debugger nub breaks in the code for that application, the source
window displays the associated source file and line number.

You can also break into the debugger manually and set a breakpoint
on specific source code lines with Toggle Breakpoint in the Source
menu or on the source window’s context menu.

Using Symbol Files
This section provides information about symbol files. You need to
have a symbol file for your executable to use Palm Debugger’s
source code debugging facility.

Each symbol file represents a single code resource and is created by
the linker. Most Palm OS applications contain a single code resource
of type 'code' and a resource ID of 1. Some applications have
more than one code resource, and thus more than one symbol file.

A symbol file contains the following items:

• the names of each of the source files that were linked together
to create the code resource

Using Palm Debugger
Using the Source Window

34 Palm OS Programming Development Tools Guide

• the offset from the start of the code resource to the object
code for each source file

• the offset from the start of the code resource for each line in
the source file

• descriptions of the data structures used

• descriptions of the name, type, and location of each local
variable used in the source code’s functions

• descriptions of the name, type, and location of each global
variable

To make use of a symbol file, Palm Debugger needs the address of
the code resource on the handheld device that corresponds to the
symbol file. The Load Symbols command on the Source menu
associates a symbol file on the desktop computer with a code
resource on the handheld device.

Using the Source Menu
Palm Debugger’s Source menu contains commands that you can
use for source level debugging. Table 1.15 summarizes these
commands. Note that several of these commands are also available
from the Source context menu, as described in the next section.

Table 1.15 Source Menu Commands

Command Description

Break Halts the handheld device in the
debugger nub by sending the same key
event as does the .

The device must be running the console
nub to activate this command.

Step Into Single steps one source line, and stops
if it steps into a subroutine.

Step Over Single steps one source line. If it steps
into a subroutine, doesn’t stop until the
subroutine returns.

Using Palm Debugger
Using the Source Window

Palm OS Programming Development Tools Guide 35

Using the Source Window Context Menu

You can activate the source context menu by right clicking your
mouse in the source window. The context menu features many of
the commands are available in the Source menu, including:

• Break

• Go Till

• Toggle Breakpoint

• Disassemble at Cursor

• Show Current Location

Go Continues execution until a breakpoint
is encountered.

Go Till Sets a temporary breakpoint at the
currently selected line in the source
window and then continues execution.

Toggle Breakpoint Toggles a breakpoint on or off at the
currently selected line in the source
window.

Disassemble at Cursor Disassembles code at the currently
selected line in the source window. The
disassembled output is displayed in the
debugging window.

Show Current Location Scrolls the source window to show the
current line in the source file.

Install Database and
Load Symbols

Imports a PRC file into the handheld
device and looks in the same directory
for the associated symbol file.

Load Symbols Opens a symbol file for use by Palm
Debugger.

Remove All Symbols Unloads any loaded symbols.

Table 1.15 Source Menu Commands (continued)

Command Description

Using Palm Debugger
Palm Debugger Error Messages

36 Palm OS Programming Development Tools Guide

The context menu also lists the source files for each symbol file that
is loaded. You can use this list to select which source file you want to
view.

Source Window Debugging Limitations
Source level debugging is limited in the current version of Palm
Debugger. Although you can perform some of your debugging with
the source window, you need to keep the following limitations in
mind to remember when you need to switch back to assembly
language debugging:

• You cannot display a stack crawl in the source window. You
need to switch to the debugging window and use the sc
command.

• Local variables that are structures or pointers to structures
display as hexadecimal addresses in the local variables pane
of the source window. To view the contents of these
structures, you need to use the dm command in the
debugging window.

• You cannot view global variables in the source window.

• Local variables are only displayed in hexadecimal format.

• You cannot change the values of local variables from the
source window. To change these values, you must use the
sb, sw, or sl commands in the debugging window.

Palm Debugger Error Messages
Most of the error messages displayed by Palm Debugger are
hexadecimal codes that can be difficult to understand. To determine
the meaning of the message, you need to look up the code in the
Palm OS header files.

Each error code is a 16-bit value, in which the upper byte represents
the code manager that generated the error, and the lower byte
represents the specific error code. For example, suppose that you
receive the following error message from Palm Debugger:

Error $00000219

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 37

The code manager code is 0x02, which is the Data Manager, and the
error code is 0x19, which is dmErrAlreadyExists.

The manager codes are located in the SystemMgr.h header file.
The value 0x02 is defined as dmErrorClass.

The specific error codes for each manager are found in the header
file for that manager. For example, the value 0x19 is defined in
DataMgr.h as dmErrAlreadyExists.

Palm Debugger Tips and Examples
This section provides a collection of tips and examples for working
with Palm Debugger, including the following sections:

• “Performing Calculations”

• Saving time with “Shortcut Characters” and “Repeating
Commands” on page 38

• “Finding a Specific Function” on page 38

• “Finding Memory Corruption Problems” on page 41

• “Displaying Local Variables and Function Parameters” on
page 44

• “Changing the Baud Rate Used by Palm Debugger” on
page 47

• “Debugging Applications That Use the Serial Port” on
page 48

• “Importing System Extensions and Libraries” on page 48

• “Determining the Current Location Within an Application”
on page 49

NOTE: Several of the examples in this section show user input
mixed with the output displayed by Palm Debugger. In these
cases, the user input—the commands you type—is shown in
boldface.

Using Palm Debugger
Palm Debugger Tips and Examples

38 Palm OS Programming Development Tools Guide

Performing Calculations
You can type numeric expressions into the debugging window to
use it as a simple hexadecimal calculator. Here are several examples
of typing a numeric expression and the results displayed in the
debugging window.

Shortcut Characters
Use the two shortcut characters to simplify your typing efforts: type
the period (.) character to specify the address value used for the
most recent command, or use the semicolon (:) character to specify
the starting address of the current routine.

Repeating Commands
You can repeat several of the debugging commands by pressing the
ENTER key repeatedly. For example, you can type the dm command
to display sixteen bytes of memory, and then press the ENTER key to
display the next sixteen bytes of memory. The s and t commands
also provide this capability.

Finding a Specific Function
A typical debugging problem is that you want to single step
through some problem code, but need to first find the code. This
section presents four different methods that you can use to find
code:

• Rebuild the application with a call to DbgBreak in the
problem routine.

• Use debugging commands to set an A-trap break on a system
call that the problem routine makes.

• Use the ft command to find the name of your routine.

Typed Expression Displayed Result

#20*4+3 $00000053 #83 #83 '...S'

20*4+3 $83 #131 #-125 '.'

123+ff $0222 #546 #546 '."'

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 39

• Use the source level debugging support to locate your
routine.

Rebuilding the Application

If you can rebuild the application that you are debugging, it is often
easiest to compile a DbgBreak call into the problem routine. Palm
Debugger will break on the line containing that call.

Setting an A-trap Break

If you know that the problem routine makes a certain system call,
you can use debugging commands to set an a-trap break on that
call. The potential problem with this method is that other routines
might make the same system call, which means that you will get
false triggers.

For example, if you want to find your application’s main event loop,
you can use the following steps.

1. Set an a-trap break for the EvtGetEvent system call, and
then tell Palm Debugger to go until it hits a break, as shown
here:

atb "evtgetevent"
A-trap set on 011d (evtgetevent)
g
Remote stopped due to: A-TRAP BREAK EXCEPTION
'EvtGetEvent'
+$0000 10C3B1E2 *LINK A6,$0000 | 4E56 0000

When Palm Debugger breaks due to an a-trap break, the
current location is at the beginning of the system call. This
means that the return address on the stack is the function that
made the system call. In the above example, this will be your
application’s main event loop.

2. Set a temporary breakpoint at the function return address
that is currently on the stack. You can use the @ operator to
fetch the long word at the stack pointer, as shown here:

gt @sp
EXCEPTION ID = $80
'EventLoop'
+$0016 1001B2E6 *MOVE.L A2,-(A7) | 2F0A

Using Palm Debugger
Palm Debugger Tips and Examples

40 Palm OS Programming Development Tools Guide

The program counter is now at the instruction in your main
event loop that immediately follows the EvtGetEvent call.

3. Disassemble your main event loop. You can use the colon
(:) symbol to easily grab the starting address of the current
routine.

il :
'EventLoop 1001B2D0'
+$0000 1001B2D0 LINK A6,-$001C | 4E56 FFE4
+$0004 1001B2D4 MOVEM.L D3-D4/A2,-(A7) | 48E7 1820
+$0008 1001B2D8 LEA -$0018(A6),A2 | 45EE FFE8
+$000C 1001B2DC PEA $00000032 ; 00000032 | 4878 0032
+$0010 1001B2E0 MOVE.L A2,-(A7) | 2F0A
+$0012 1001B2E2 _EvtGetEvent ; $10C3B1E2 | 4E4F A11D
+$0016 1001B2E6 *MOVE.L A2,-(A7) | 2F0A
+$0018 1001B2E8 _SysHandleEvent ; $10C0E9EC | 4E4F A0A9
+$001C 1001B2EC ADD.W #$000C,A7 | DEFC 000C
+$0020 1001B2F0 TST.B D0 | 4A00

The atb, g, gt, and il commands are described in detail in Chapter
2, “Palm Debugger Command Reference.”

Using the Find Text Command

Another method for finding a certain code routine is to search
through memory for the name of the routine. You can use Palm
Debugger’s ft command to search for text. This command takes
three arguments: the text to find, the starting address of the search,
and the number of bytes to search.

For example, to search through the first megabyte of RAM on a
Palm III™, you can use the following command:

ft "EventLoop" 10000000 100000
dm 100005C4 ;100005C4: 45 76 65 6E 74 4C 6F 6F 70 63 61 74 69
6F 6E 00 "EventLoop......"

NOTE: RAM starts at address 0x10000000 in all current Palm
handheld devices except for the Palm V™. RAM starts at address
0 on the Palm V.

To search ROM instead, use address 0x10C00000.

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 41

You can repeat the find, starting from the current location, by
pressing the ENTER key.

dm 1001B355 ;1001B355: 45 76 65 6E 74 4C 6F 6F 70 00 00 4E 56
00 00 2F "EventLoop..NV../"

You can ensure that the routine you’ve found is the one you want by
disassembling the current routine with the il command and
searching through the routine with the ft command.

NOTE: When you use the ft command, the first instance of the
search string is actually a copy of the search string the debugger
nub is using. You must search a second time to find the first
“actual” instance of the text string.

Using the Source Level Debugging Support

If you have built your application with the gcc compiler and
generated a symbol file, you can find your code by following these
steps:

1. Launch the console nub on the handheld device, as described
in “Activating Console Input” on page 122.

2. Open your symbols file. You can use the Open Symbol File
command from Palm Debugger’s Source menu.

3. After the symbol file has loaded, choose the Break command
from the Source menu to break into the debugger nub on the
device.

4. In the source window, select the source line of the routine
you want to debug.

5. Select Toggle Breakpoint from the Source menu to set the
breakpoint.

Finding Memory Corruption Problems
As anyone who has tried knows, finding the routine that is trashing
memory can be a very frustrating task. A memory bug can trash the
low memory global variables used by the system, the dynamic
memory heap, or an application variable, any of which can cause

Using Palm Debugger
Palm Debugger Tips and Examples

42 Palm OS Programming Development Tools Guide

unpredictable behavior. This section provides tips for tracking
down two kinds of memory bugs:

• heap corruptions

• application variable corruption

Tracking Down Heap Corruption

If you suspect a corrupted heap, check the heap. You can perform a
fast check of the heap with the hchk command, which verifies the
validity of the heap. For example:

hchk 0
Heap OK

You can also use the hd 0 command to display a dump of the
dynamic heap. If the heap is in a valid state, the heap dump will
complete and you will see the heap summary displayed at the
bottom of the window. For example:

hd 0

Displaying Heap ID: 0000, mapped to 00001480
 req act resType/
#resID/
 start handle localID size size lck own flags type index attr ctg
uniqueID name

-00001534 00001494 F0001495 000456 00045E #0 #0 fM Graffiti Private
-00001992 00001498 F0001499 000012 00001A #0 #0 fM DataMgr Protect List
(DmProtectEntryPtr*)
-000019AC 00001490 F0001491 00001E 000026 #0 #0 fM Alarm Table
-000019D2 0000148C F000148D 000038 000040 #0 #0 fM
*00001A12 0000149C F000149D 000396 00039E #2 #1 fM Form "3:03 pm"
*00001DB0 000014A0 F00014A1 00049A 0004A2 #2 #0 fM
 00002252 -------- F0002252 00002E 00003E #0 #0 FM
 00002290 -------- F0002290 00EC40 00EC50 #0 #0 FM
-00010EE0 -------- F0010EE0 000600 000608 #0 #15 fM Stack: Console Task

...

000114E8 -------- F00114E8 000FF8 001008 #0 #0 FM
-000124F0 -------- F00124F0 001000 001008 #0 #15 fM
-00017D30 -------- F0017D30 00003C 000044 #0 #15 fM SysAppInfoPtr: AMX

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 43

-00017D74 -------- F0017D74 000008 000010 #0 #15 fM Feature Manager Globals
(FtrGlobalsType)
-00017D84 -------- F0017D84 000024 00002C #0 #15 fM DmOpenInfoPtr: 'Update
3.0.2'
-00017DB0 -------- F0017DB0 00000E 000016 #0 #15 fM DmOpenRef: 'Update
3.0.2'
-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15 fM Handle Table: 'Ô©Update
3.0.2'
-00017FC2 -------- F0017FC2 000024 00002C #0 #15 fM DmOpenInfoPtr:
'Ô©Update 3.0.2'
-00017FEE -------- F0017FEE 00000E 000016 #0 #15 fM DmOpenRef: 'Ô©Update
3.0.2'

Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010C50 bytes)
 Movable Chunks: #51 (005E80 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

If you break into the debugger nub at various points during the
execution of your application and check the heap, you can narrow
down where the corruption is occurring in your code.

Another method for tracking down heap corruption is to use the
mdebug command, which puts the handheld device into one of
several heap checking modes. Once a heap-checking mode has been
activated on the device, the Palm OS performs an automatic heap
check and verification after each call to the Memory Manager. If the
heap is corrupted, the system automatically breaks into the
debugger. The following is an example of the mdebug command:

mdebug -partial
Current mode = 001A
Only Affected heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked

Minimum dynamic heap free space recording OFF

Note that the memory checking modes can seriously degenerate the
performance of an application. You can enable or disable various

Using Palm Debugger
Palm Debugger Tips and Examples

44 Palm OS Programming Development Tools Guide

mdebug options to strike a balance between performance and
debugging information. For more information, see “mdebug” on
page 156.

The hd, hchk, and mdebug commands are described in detail in
Chapter 2, “Palm Debugger Command Reference.”

Tracking Down Global Variable Corruption

When you have a bug that is trashing a system or application global,
you must first determine which address in memory is being
corrupted. Once you know that address, you can use the Step-Spy
(ss) command to watch the address. The ss command puts the
processor into single-step mode and automatically checks the
contents of a specified address after each instruction. If the
instruction causes the contents of the address the change, the
debugger breaks. For example:

ss 100
Step Spying on address: 00000100

Note that the ss command is single-stepping through instructions,
and thus the handheld device runs slowly. Ideally, you can narrow
down the range of code involved with the corruption and use this
command to watch the execution of this code section.

Displaying Local Variables and Function
Parameters
If you are debugging with the source window, the current function’s
local variables and parameters are displayed in the upper pane of
the window. However, if you do not have access to symbol
information, you need to use debugging commands to manually
look up the variable values. This section describes the steps you
need to take to look up values for a typical function, which is shown
in Listing 1.4

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 45

Listing 1.4 An Example Function for Viewing Local Variables
and Parameters

static Boolean
MainFrmEventHandler (EventPtr eventP)
{

FormPtr formP;
Boolean handled = false;
Err err;
char buffer[64];
UInt32 numBytes=0;
Int16 i;
static char prevChar = 0;

 // See if StdIO can handle it
 if (StdHandleEvent (eventP)) return true;

 // body of function omitted for clarity
 ...

 return false;
}

If you break into the debugger and disassemble the code at the
beginning of this function, just before it calls the StdHandleEvent
function, this is what you see:

il :
'MainFrmEventHandler 1001E296'
+$0000 1001E296 LINK A6,-$0048| 4E56 FFB8
+$0004 1001E29A MOVEM.L D3-D5/A2,-(A7)| 48E7 1C20
+$0008 1001E29E MOVE.L $0008(A6),A2| 246E 0008
+$000C 1001E2A2 CLR.B D5| 4205
+$000E 1001E2A4 CLR.L -$0044(A6)| 42AE FFBC
+$0012 1001E2A8 *MOVE.L A2,-(A7)| 2F0A
+$0014 1001E2AA BSR.W StdHandleEvent ; 1001F214| 6100 0F68
+$0018 1001E2AE ADDQ.W #$04,A7| 584F
+$001A 1001E2B0 TST.B D0| 4A00
+$001C 1001E2B2 BEQ.S MainFrmEventHandler+$0024 ; 1001E2BA |
6706

The first UInt32 on the stack upon function entry is the return
address for the function. Immediately following that are the
parameter values, from left to right. In the listing above, if you

Using Palm Debugger
Palm Debugger Tips and Examples

46 Palm OS Programming Development Tools Guide

display the memory pointed to by the stack pointer at the beginning
of the function, you see the following:

dm sp
00014A2A: 10 C4 77 00 00 01 4A 4E 00 01 4A 4E 00 01 51 0E
"..w...JN..JN..Q."

The first UInt32 (0x10C47700) is the return address of the
function.

The second UInt32 (0x00014A4E) is the value of the function’s
eventP parameter.

After the LINK instruction executes however, the stack pointer
register is changed: the stack pointer is decremented to make room
for a saved value of the A6 register and for local variables; in this
example, there are 0x48 bytes of local variables.

After the LINK instruction executes, the A6 register is changed to
point to the beginning of the functions’ stack frame. This register is
used by the function to access parameters and local variables. The
following shows what the stack looks like after the LINK instruction
executes:

Address : Contents

 A7 => 149CE <= new "top" of stack
 : ... <= 0x48 bytes of local
variables
 A6 => 14A26 : 00 01 4A 3A <= saved value of A6

14A2A : 10 C4 77 00 <= return address
14A2E : 00 01 4A 4E <= eventP parameter

If you display the memory referenced by register A6 at this time,
you see the following:

dm a6
00014A26: 00 01 4A 3A 10 C4 77 00 00 01 4A 4E
00 01 4A 4E "..J:..w...JN..JN"

The first UInt32 pointed to by A6 is the old value of A6, the next
UInt32 is the return address of the routine, and following that are
the function parameter values. This means that the first parameter
to the function can always be found at 8(A6).

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 47

Any local variables belonging to the function are stored in memory
locations preceding A6. In the above example, the numBytes local
variable is located at -$0044(A6). Once you know the offset of the
variable, you can access by using an offset from the A6 register;
thus, you can use the following command to view the numBytes
parameter:

dm -44+a6
000149E2: 00 00 00 00 00 00 1A 0C 20 00 20 04
00 01 4A 08 "........J."

Changing the Baud Rate Used by Palm
Debugger
Both the debugger and console nubs on the handheld device always
start communicating at 57,600 baud. You can change this baud rate
by selecting a new speed from Palm Debugger’s Communications
menu.

If you are using a serial cable that does not include hardware
handshaking lines, you might need to switch to a lower baud rate.
And if you are downloading a large file to the handheld device, you
might want to switch higher baud rate. Palm Debugger lets you set
the baud rate to values ranging from 2400 baud to 230,400 baud.

When you choose a new baud rate, Palm Debugger sends a request
packet to the nub on the handheld device to change its baud rate,
and then Palm Debugger changes its own baud rate. If Palm
Debugger is attached to the debugger nub on the device, the request
goes to the debugger nub; otherwise, the request goes to the console
nub.

In either case, changing the baud rate of either nub on the handheld
device changes the baud rate of both nubs.

NOTE: The new baud rate is only in effect until you soft reset
the handheld device.

Using Palm Debugger
Palm Debugger Tips and Examples

48 Palm OS Programming Development Tools Guide

Debugging Applications That Use the Serial
Port
Although it is very difficult to debug an application that uses the
serial port, you can still use a limited set of debugging functions.
You cannot use the console nub while an application on the
handheld device is using the serial port.

When you do enter the debugger nub on the handheld device while
debugging a serial application, the debugger sends data over the
serial port and probably disrupts the application’s communications.
At that point, you can switch the serial cable back over to Palm
Debugger, double-check your baud rate setting, attach to the device
with the att command, and perform “post-mortem” analysis of the
problem.

Making Sure the Baud Rates Match

If the debugger nub on the handheld device has already been
entered at least once, and you later launch a handheld application
that opens the serial port, that application might change the port
speed. The debugger nub will then use the new baud rate, but you
will need to manually change the baud rate that Palm Debugger is
using for communications to work. Use Palm Debugger’s
Communications menu to change the speed.

Importing System Extensions and Libraries
You can use the console window import command to copy a new
database or replace an existing database on the handheld device.
However, the import command cannot replace a database that is
currently opened.

If you are developing a system extension or shared library and need
to use the import command, you need to do some extra work. This
is due to the fact that system extension databases and shared
libraries are generally either opened or marked as protected. To
import a newer version of a system extension database or shared
library, you have to make sure that the old database has been closed
and is not protected; otherwise, the import command generates the
following message:

###Error $00000219 occurred

Using Palm Debugger
Palm Debugger Tips and Examples

Palm OS Programming Development Tools Guide 49

To get around this problem, you need to perform a soft reset on the
handheld device and tell the Palm OS to not automatically load
system extensions or shared libraries. To do so, follow these steps:

1. Press the Up button on the handheld device while pressing
the reset button on the back of the device with a paper clip or
similar blunt object. This tells the Palm OS on the device to
not load the system extension databases and shared libraries.

2. Start the console nub on the handheld device.
3. Import your system extension or shared library with the

import command.
4. Perform another soft reset on the device, and the system will

use the new version of the extension or library.

Determining the Current Location Within an
Application
You can use one of the following three methods to determine where
you are in your code:

1. Disassemble code starting at the beginning of the current
routine, using the following command:

il :
'EventLoop 1001B2D0'
+$0000 1001B2D0 LINK A6,-$001C | 4E56 FFE4
+$0004 1001B2D4 MOVEM.L D3-D4/A2,-(A7) | 48E7 1820
+$0008 1001B2D8 LEA -$0018(A6),A2 | 45EE FFE8
+$000C 1001B2DC PEA $00000032 ; 00000032 | 4878 0032
+$0010 1001B2E0 MOVE.L A2,-(A7) | 2F0A
+$0012 1001B2E2 _EvtGetEvent ; $10C3B1E2 | 4E4F A11D
+$0016 1001B2E6 *MOVE.L A2,-(A7) | 2F0A
+$0018 1001B2E8 _SysHandleEvent ; $10C0E9EC | 4E4F A0A9
+$001C 1001B2EC ADD.W #$000C,A7 | DEFC 000C
+$0020 1001B2F0 TST.B D0 | 4A00

2. Perform a stack crawl with the sc command, which displays
the oldest routine at the top and the newest at the bottom.
For example:

sc
Calling chain using A6 Links:
A6 Frame Caller
00000000 10C68982 cjtkend+0000
00015086 10C6CA26 __Startup__+0060

Using Palm Debugger
Palm Debugger Tips and Examples

50 Palm OS Programming Development Tools Guide

00015066 10C6CCCE PilotMain+0250
00014FC2 10C0F808 SysAppLaunch+0458
00014F6E 10C10258 PrvCallWithNewStack+0016
0001491E 1001CC7E start+006E
000148E6 1001CF44 PilotMain+001C

3. Get a list of the currently opened databases. Your application
should be one of the listed databases. Note that the System
and GraffitiShortCuts databases are always opened by
the system, and will appear at the bottom of the list. Use the
opened command as follows:

opened

name resDB cardNum accessP ID openCnt mode
--
LauncherDB no 0 00015146 0001814F 1 0003
*Launcher yes 0 00016DD2 00D1FA98 1 0001
*Graffiti ShortCuts yes 0 00017D5C 001FFE7F 1 0007
*System yes 0 00017FEE 00D20A44 1 0005
--
Total: 4 databases opened

Palm OS Programming Development Tools Guide 51

2
Palm Debugger
Command
Reference
This chapter describes Palm Debugger commands. For an
introduction to using Palm Debugger, see Chapter 1, “Using Palm
Debugger.”

This chapter begins with a description of the syntax used to describe
commands, and then expands into the following sections:

• “Debugging Window Commands” on page 53 provides a
reference description for each command that you can use in
the debugging window to communicate with the debugger
nub running on the handheld device. The command
reference listings are ordered alphabetically.

• “Debugging Command Summary” on page 85 provides
tables that summarize the debugging commands by
category.

Command Syntax
This chapter uses the following syntax to specify the format of
debugger commands:

commandName <parameter> [options]

commandName The name of the command.

parameter Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by
the | character.

Palm Debugger Command Reference
Command Syntax

52 Palm OS Programming Development Tools Guide

options Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window
and with the backslash (\) character in the
debugging window.

NOTE: Any portion of a command that is shown enclosed in
square brackets (“[” and “]”) is optional.

The following is an example of a command definition

dir (<cardNum>|<srchOptions>) [displayOptions]

The dir command takes either a card number of a search
specification, followed by display options.

Here are two examples of the dir command sent from the console
window:

dir 0 -a
dir -t rsrc

And here are the same two commands sent from the debugging
window:

dir 0 \a
dir \t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash (in the console window) or backslash
(in the debugging window). For example:

-c
-enable
\enable

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\temp\myLogFile
\t Rsrc

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 53

Specifying Numeric and Address Values
Many of the debugging commands take address or numeric
arguments. You can specify these values in hexadecimal, decimal, or
binary. All values are assumed to be hexadecimal unless preceded
by a sign that specifies decimal (#) or binary (%). Table 2.1 shows
values specified as binary, decimal, and hexadecimal in a debugging
command:

For more information, see “Specifying Constants” on page 17.

Using the Expression Language
When you send commands from the debugging window to the
debugger nub on the handheld device, you can use Palm
Debugger’s expression language to specify the command
arguments. This language is described in “Using Debugger
Expressions” on page 17.

Debugging Window Commands
You use Palm Debugger’s debugging window to send commands to
the debugger nub that is running on the handheld device.

NOTE: You can use Palm Debugger’s expression language to
specify arguments to debugging window commands. The
expression language is described in “Using Debugger
Expressions” on page 17.

Table 2.1 Specifying numeric values in Palm Debugger

Hex value Decimal value Binary value

64 or $64 #100 %01100100

F5 or $F5 #245 %11110101

100 or $100 #256 %100000000

Palm Debugger Command Reference
Debugging Window Commands

54 Palm OS Programming Development Tools Guide

This section provides a description of all of the commands in
alphabetical order. For convenience, the commands are categorized
here:

>

Purpose Defines a structure field.

Usage > <typeName> <“fieldName”>

Parameters typeName The type of the field.

fieldName The quoted name of the field in the template.

Comments Use the > command in conjunction with the typedef and typeend
commands to defined structure templates that you can use to
display complex structures with a single memory display (dm)
command.

Example typedef struct “PointType”
> SWord “X”
> SWord “Y”
typeend

Table 2.2 Debugging window command categories

Category Commands

Console cardinfo, dir, hchk, hd, hl, ht, info, opened, storeinfo

Flow Control att, atb, atc, atd, br, brc, brd, cl, dx, g, gt, s, ss t, reset

Memory atr, db, dl, dm, dw, fb, fill, fl, ft, fw, il, sb, sc, sc6, sc7, sl,
sw, wh

Miscellaneous help, penv

Register reg

Template >, sizeof, templates, typedef, typeend

Utility alias, aliases, bootstrap, keywords, load, run, save, var,
variables

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 55

alias

Purpose Defines or displays an alias.

Usage alias <“name”>
alias <“name”> <“definition”>

Parameters name The quoted name of the alias.

definition The quoted definitional text for the alias.

Comments Use the alias command to define an alias for a command or group
of commands.

If you provide only the name of an alias, this command displays the
definition for that name.

Example alias “ls” “dir”

aliases

Purpose Displays the names of all defined aliases.

Usage aliases

Parameters None.

Example aliases
ls

atb

Purpose Adds an A-Trap break.

Usage atb (<“funcName”> | <trapNum>)
([libRefNum> | <“libName”>])

Parameters funcName The quoted name of the function.

trapNum The A-Trap number.

Palm Debugger Command Reference
Debugging Window Commands

56 Palm OS Programming Development Tools Guide

libRefNum Optional. the reference number for the library
in which the function resides.

libName Optional. The quoted name of the library in
which the function resides.

atc

Purpose Clears an A-Trap break.

Usage atc (<“funcName”> | <trapNum>)
([libRefNum> | <“libName”>])

Parameters funcName The quoted name of the function.

trapNum The A-Trap number.

libRefNum Optional. the reference number for the library
in which the function resides.

libName Optional. The quoted name of the library in
which the function resides.

atd

Purpose Displays a list of all the A-Trap breaks currently set.

Usage atd

Parameters None.

atr

Purpose Registers a function name with an A-Trap number.

Usage atr <“funcName”> <trapNum> [<“libName”>]

Parameters funcName The quoted name of the function.

trapNum The A-Trap number.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 57

libName Optional. The quoted name of the library in
which the function resides.

att

Purpose Attach to the handheld device.

Usage att [options]

Parameters options You can optionally specify the following
options:

\async
Attach asynchronously.

Example att
EXCEPTION ID = $A
 +$0512 10C0EEFE *MOVEQ.L #$01,D0 | 7001

NOTE: The att command will not connect Palm Debugger to
Palm OS Simulator. Instead, you should connect from Palm OS
Simulator to Palm Debugger by either:

- Entering “shortcut . 1” as described in “Using Shortcut Numbers
to Activate the Windows” on page 6 from Palm OS Simulator.

- Entering CTRL+PAUSE (or CTRL+ATTN) from Palm OS Simulator.

Either of these methods will cause Palm OS Simulator to enter
debug mode. Next, use the PalmDebugger command g to resume
debugging.

Palm Debugger Command Reference
Debugging Window Commands

58 Palm OS Programming Development Tools Guide

bootstrap

Purpose Loads a ROM image into memory on the handheld device, using the
bootstrap mode of the processor.

Usage bootstrap <“hwInitFileName”> <“romFileName”>
[options]

Parameters hwInitFileName The quoted name of the hardware initialization
file on your desktop computer.

romFileName The quoted name of the ROM image file on
your desktop computer.

options You can optionally specify the following
options:

\slow

br

Purpose Sets a breakpoint at the specified address.

Usage br [options] <addr>

Parameters options Optional. You can specify the following option:

\toggle
Toggles the breakpoint on or off.

addr The memory address at which to set the
breakpoint.

brc

Purpose Clears a breakpoint or all breakpoints.

Usage brc
brc <addr>

Parameters addr A memory address.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 59

Comments Use the br command to clear a specific breakpoint or to clear all
breakpoints. if you specify a valid address value, that breakpoint is
cleared. If you do not specify any address value, all breakpoints are
cleared.

NOTE: The cl and brc commands are identical.

brd

Purpose Displays a list of all of the breakpoints that are currently set.

Usage brd

Parameters None.

cardinfo

Purpose Retrieves information about a memory card.

Usage cardinfo <cardNum>

Parameters cardNum The number of the card for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

Comments You can use the cardinfo command in either the Console window
or the debugging window.

Example cardinfo 0

Name: PalmCard
Manuf: Palm, Inc
Version: 0001
CreationDate: B1243780
ROM Size: 00118FFC
RAM Size: 00200000
Free Bytes : 0015ACB2
Number of heaps: #3

Palm Debugger Command Reference
Debugging Window Commands

60 Palm OS Programming Development Tools Guide

cl

Purpose Clears a breakpoint or all breakpoints.

Usage cl
cl <addr>

Parameters addr A memory address.

Comments Use the cl command to clear a specific breakpoint or to clear all
breakpoints. if you specify a valid address value, that breakpoint is
cleared. If you do not specify any address value, all breakpoints are
cleared.

NOTE: The cl and brc commands are identical.

db

Purpose Displays the byte value at a specified address.

Usage db <addr>

Parameters addr A memory address.

Example db 0100
Byte at 00000100 = $01 #1 #1 '.'

dir

Purpose Displays a list of the databases on the handheld device.

Usage dir (<cardNum>|<searchOptions>) [<displayOptions>]

Parameters cardNum The card number whose databases you want
listed. You almost always use 0 to specify the
built-in RAM.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 61

searchOptions Optional. Options for listing a specific
database. Specify any combination of the
following flags.

\c <creatorID>
Search for a database by creator ID.

\latest
List only the latest version of each
database.

\t <typeID>
Search for a database by its type.

displayOptions Optional. Options for which information is
displayed in the listing. Specify any
combination of the following flags.

\a Show all information.

\at Show the database attributes.

\d Show the database creation,
modification, and backup dates.

\i Show the database appInfo and sortInfo
field values.

\id Show the database chunk ID

\s Show the database size

\m Show the database modification number.

\n Show the database name.

\r Show the number of records in the
database.

\tc Show the database type ID and creator
ID.

\v Show the database version number.

Comments Use the dir command to display a list of the databases on a specific
card or in the handheld device built-in RAM. You typically use the
following command to list all of the databases stored in RAM on the
handheld device:

Palm Debugger Command Reference
Debugging Window Commands

62 Palm OS Programming Development Tools Guide

dir 0

Or use the -a switch to display all of the information for each
database:

dir 0 -a

NOTE: You can use the dir command in either the Console
window or the debugging window. However, the command
options must be prefaced with the “\” character in the debugging
window, rather than with the “-” character that you use in the
console window version.

Example dir 0

name ID total data
--
*System 00D20A44 392.691 Kb 390.361 Kb
*AMX 00D209C4 20.275 Kb 20.123 Kb
*UIAppShell 00D20944 1.327 Kb 1.175 Kb
*PADHTAL Library 00D208E2 7.772 Kb 7.674 Kb
*IrDA Library 00D20876 39.518 Kb 39.402 Kb
 ...
 MailDB 0001817F 1.033 Kb 0.929 Kb
 NetworkDB 0001818B 0.986 Kb 0.722 Kb
 System MIDI Sounds 000181B3 1.066 Kb 0.842 Kb
 DatebookDB 000181FB 0.084 Kb 0.000 Kb

Total: 41

dl

Purpose Displays the 32-bit long value at a specified address.

Usage dl <addr>

Parameters addr A memory address.

Example dl 0100
Long at 00000100 = $01010000 #16842752 #16842752 '....'

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 63

dm

Purpose Displays memory for a specified number of bytes or templates.

Usage dm <addr> [<count>] [<template>]

Parameters addr A memory address.

count Optional. The number of bytes to display.

template. The name of the structure template to use. This
defines how much memory to display and how
to display it.

Comments Use the dm command to display a range of memory values. You can
specify a byte count or a structure template; if you do not specify
either, dm displays sixteen bytes of memory.

Example dm 0100 8
00000100: 01 01 00 00 02 B0 00 01

dump

Purpose Dumps memory to a file.

Usage dump <“filename”> <addr> <numBytes>

Parameters filename The quoted name of the file to which the data is
to be written.

addr A memory address.

numBytes The number of bytes of memory to write to the
file.

Comments Use the dump command to write a dump of a range of memory
addresses to file.

Palm Debugger Command Reference
Debugging Window Commands

64 Palm OS Programming Development Tools Guide

dw

Purpose Displays the 16-bit word value at a specified address.

Usage dw <addr>

Parameters addr A memory address.

Example dw 0100
Word at 00000100 = $0101 #257 #257 '..'

dx

Purpose Enables or disables DbgBreak() breaks.

dx

Parameters None.

fb

Purpose Searches through a range of memory for a specified byte value.

Usage fb <value> <addr> <numBytes> [flags]

Parameters value The byte value to find.

addr The address at which to start the search.

numBytes The number of bytes to search.

flags Optional. You can specify the following flags:

\a Find all occurrences within the specified
range.

\i Use caseless comparison.

Comments By default, fb uses a case sensitive comparison.

Example fb ff 0100 200

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 65

dm 00000110 ;00000110: FF 00 00 00 03 18 00 00 03 BC 00
01 7D 72 00 01 “............}r..”

fill

Purpose Fills memory with a specified byte value.

Usage fill <addr> <numBytes> <value>

Parameters addr A memory address.

numBytes The number of bytes to fill with the value.

value The value assigned to each byte.

Example fill 0100 8 FF

fl

Purpose Searches through a range of memory for a specified 32-bit long
value.

Usage fb <value> <addr> <numBytes> [flags]

Parameters value The byte value to find.

addr The address at which to start the search.

numBytes The number of bytes to search.

flags Optional. You can specify the following flags:

\a Find all occurrences within the specified
range.

\i Use caseless comparison.

Comments By default, fl uses a case sensitive comparison.

Example fl ffff 0 1000

dm 00000034 ;00000034: FF FF 00 00 FF FF 00 00 FF FF 00
00 FF FF 00 00 "................"

Palm Debugger Command Reference
Debugging Window Commands

66 Palm OS Programming Development Tools Guide

ft

Purpose Searches through a range of memory for the specified text.

Usage ft <text> <addr> <numBytes> [flags]

Parameters text The quoted text to find.

addr The address at which to start the search.

numBytes The number of bytes to search.

flags Optional. You can specify the following flags:

\a Find all occurrences within the specified
range.

\i Use caseless comparison.

Comments By default, ft uses a case sensitive comparison.

Example ft “abc” 0 1000

dm 000005C4 ;000005C4: 61 62 63 27 00 00 00 00 00 01 4B
06 00 00 0

fw

Purpose Searches through a range of memory for the specified 16-bit word
value.

Usage fw <value> <addr> <numBytes> [flags]

Parameters value The value to find.

addr The address at which to start the search.

numBytes The number of bytes to search.

flags Optional. You can specify the following flags:

\a Find all occurrences within the specified
range.

\i Use caseless comparison.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 67

Comments By default, fw uses a case sensitive comparison.

Example fw 32000 0 1000

dm 00000258 ;00000258: 00 20 00 00 00 07 A7 0E 00 00 00
01 00 00 00 00 "."

g

Purpose Continues execution.

Usage g
g <addr>

Parameters addr Optional. The address from which to continue
execution.

Comments You can optionally specify a starting address for the g command. If
you do not specify an address, execution continues from the current
program counter location.

Example g

gt

Purpose Sets a temporary breakpoint at the specified address, and resumes
execution from the current program counter.

gt <addr>

Parameters addr The address at which to set the breakpoint. If
you do not specify an address, the current
program counter location is used.

Palm Debugger Command Reference
Debugging Window Commands

68 Palm OS Programming Development Tools Guide

hchk

Purpose Checks the integrity of a heap.

Usage hchk <heapId> [options]

Parameters heapId The hexadecimal number of the heap whose
contents are to be checked. Heap number
0x0000 is always the dynamic heap.

options Optional. You can specify the following option:

\c Check the contents of each chunk.

Comments NOTE: You can use the hchk command in either the Console
window or the debugging window. However, the command
options must be prefaced with the “\” character in the debugging
window, rather than with the “-” character that you use in the
console window version.

Example hchk 0000
Heap OK

hd

Purpose Displays a hexadecimal dump of the specified heap.

Usage hd <heapId>

Parameters heapId The hexadecimal number of the heap whose
contents are to be displayed. Heap number
0x0000 is always the dynamic heap.

Comments Use the hd command to display a dump of the contents of a specific
heap from the handheld device. You can use the hl command to
display the heap IDs.

Example hd 0

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 69

Displaying Heap ID: 0000, mapped to 00001480
 req act resType/
#resID/
 start handle localID size size lck own flags type index attr ctg
uniqueID name

-00001534 00001494 F0001495 000456 00045E #0 #0 fM Graffiti Private
-00001992 00001498 F0001499 000012 00001A #0 #0 fM DataMgr Protect List
(DmProtectEntryPtr*)
-000019AC 00001490 F0001491 00001E 000026 #0 #0 fM Alarm Table
-000019D2 0000148C F000148D 000038 000040 #0 #0 fM
*00001A12 0000149C F000149D 000396 00039E #2 #1 fM Form “3:03 pm”
*00001DB0 000014A0 F00014A1 00049A 0004A2 #2 #0 fM
 00002252 -------- F0002252 00002E 00003E #0 #0 FM
 00002290 -------- F0002290 00EC40 00EC50 #0 #0 FM
-00010EE0 -------- F0010EE0 000600 000608 #0 #15 fM Stack: Console Task

...

000114E8 -------- F00114E8 000FF8 001008 #0 #0 FM
-000124F0 -------- F00124F0 001000 001008 #0 #15 fM
-00017D30 -------- F0017D30 00003C 000044 #0 #15 fM SysAppInfoPtr: AMX
-00017D74 -------- F0017D74 000008 000010 #0 #15 fM Feature Manager Globals
(FtrGlobalsType)
-00017D84 -------- F0017D84 000024 00002C #0 #15 fM DmOpenInfoPtr: 'Update
3.0.2'
-00017DB0 -------- F0017DB0 00000E 000016 #0 #15 fM DmOpenRef: 'Update
3.0.2'
-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15 fM Handle Table: 'Ô©Update
3.0.2'
-00017FC2 -------- F0017FC2 000024 00002C #0 #15 fM DmOpenInfoPtr:
'Ô©Update 3.0.2'
-00017FEE -------- F0017FEE 00000E 000016 #0 #15 fM DmOpenRef: 'Ô©Update
3.0.2'

Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010C50 bytes)
 Movable Chunks: #51 (005E80 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

Palm Debugger Command Reference
Debugging Window Commands

70 Palm OS Programming Development Tools Guide

help

Purpose Displays a list of commands or help for a specific command.

Usage help
help <command>
?
? <command>

Parameters command The name of the command for which you want
help displayed.

Comments You can use the help command in either the Console window or
the debugging window.

Example help hchk

Do a Heap Check.
Syntax: hchk <hex heapID> [options...]
 -c : Check contents of each chunk

hl

Purpose Displays a list of memory heaps.

Usage hl <cardNum>

Parameters cardNum The card number on which the heaps are
located. You almost always use 0 to specify the
built-in RAM.

Comments Use the hl command to list the memory heaps in built-in RAM or
on a card.

You can use the hl command in either the Console window or the
debugging window.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 71

Example hl 0

 index heapID heapPtr size free maxFree flags
--
 0 0000 00001480 00016B80 00010C50 0000EC48 8000
 1 0001 1001810E 001E7EF2 0014AD6A 00147D3A 8000
 2 0002 10C08212 00118DEE 0000A01C 0000A014 8001

ht

Purpose Displays summary information for the specified heap.

Usage ht 0

Parameters None.

Comments The ht commands displays the summary information that is also
shown at the end of a heap dump generated by the hd command.

You can use the ht command in either the Console window or the
debugging window.

Example ht 0000
Displaying Heap ID: 0000, mapped to 00001480
--
Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010CAA bytes)
 Movable Chunks: #48 (005E26 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

il

Purpose Disassembles code in a specified line range.

Usage il [<addr> | <“funcName”> [lineCount]]

Parameters addr Optional. The starting address at which to
disassemble.

Palm Debugger Command Reference
Debugging Window Commands

72 Palm OS Programming Development Tools Guide

funcName Optional. The name of the function whose code
you want disassembled.

lineCount Optional. If you provide a value for addr, you
can also specify the number of lines of code to
disassemble starting at addr.

Comments Use the il command to disassemble code. If you do not provide a
function name or starting address value, disassembly begins at the
current program counter value.

Example il 0100

 00000100 BTST D0,D1 | 0101
 00000102 ORI.B #$B0,D0 ; '.' | 0000 02B0
 00000106 ORI.B #$30,D1 ; '0' | 0001 7830
 0000010A ORI.B #$01,D0 ; '.' | 0000 0001
 0000010E | 474A
 00000110 CoProc | FF00 0000 0318
 00000116 ORI.B #$BC,D0 ; '.' | 0000 03BC
 0000011A ORI.B #$72,D1 ; 'r' | 0001 7D72
 0000011E ORI.B #$BC,D1 ; '.' | 0001 6FBC
 00000122 ORI.B #$22,D0 ; '”' | 0000 0722

info

Purpose Displays information about a memory chunk.

Usage info (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <cardNum>
The card number if a local ID is specified
instead of a chunk pointer.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 73

Comments NOTE: You can use the info command in either the Console
window or the debugging window. However, the command
options must be prefaced with the “\” character in the debugging
window, rather than with the “-” character that you use in the
console window version.

keywords

Purpose Lists all debugger keywords.

Usage keywords

Parameters None.

Example keywords

t
g
SR
PC
SP
A7
A6
A5
A4
A3
A2
A1
A0
D7
...

load

Purpose Loads the data fork of a file at the specified address.

Usage load <“fileName”> <addr>

Parameters fileName The quoted name of the file whose data fork
you want loaded.

Palm Debugger Command Reference
Debugging Window Commands

74 Palm OS Programming Development Tools Guide

addr The memory address at which you want the
data fork loaded.

opened

Purpose Lists all of the currently opened databases.

Usage opened

Parameters None.

Comments You can use the opened command in either the Console window or
the debugging window.

Example opened

name resDB cardNum accessP ID openCnt mode
--
*Graffiti ShortCuts yes 0 00017D5C 001FFE7F 1 0007
*System yes 0 00017FEE 00D20A44 1 0005
--
Total: 2 databases opened

penv

Purpose Displays current environment information for the debugger.

Usage penv

Parameters None.

Comments The penv command displays the current values of the predefined
debugger environment variables, which are summarized in
Debugger Environment Variables.

Example penv
============================
DebOut = false
SymbolsOn = true
StepRegs = false

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 75

ReadMemHack = false
Attached = true
............................
dot address = 00000000
last address = 00001022
last count = 0000000a
============================

reg

Purpose Displays all registers.

Usage reg

Parameters None.

Example reg

D0 = 00000102 A0 = 10C0EEF6 USP = BF6E446F
D1 = 00000013 A1 = 10C0EF0E SSP = 000132E4
D2 = 00000027 A2 = 000133C2
D3 = 00000000 A3 = 00015404
D4 = 00014B06 A4 = 10CCFB7C
D5 = 00000000 A5 = 000149AA
D6 = 00D1EFE8 A6 = 000133AC PC = 10C0EEFE
D7 = 0001515E A7 = 000132E4 SR = tSxnzvc Int = 0

reset

Purpose Performs a soft reset on the handheld device.

Usage reset

Parameters None.

Comments This command performs the same reset that is performed when you
press the recessed reset button on a Palm Powered handheld device.
It resets the memory system and reformats both cards.

You can use the reset command in either the Console window or
the debugging window.

Palm Debugger Command Reference
Debugging Window Commands

76 Palm OS Programming Development Tools Guide

Example reset
Resetting system

run

Purpose Runs a debugger script from file.

Usage run <“fileName”>

Parameters filename The quoted name of the file that contains the
debugger script.

s

Purpose Single steps the processor, stepping into subroutines.

Usage s

Parameters None.

Example s

'SysHandleEvent'
 +$0694 10C0F080 *MOVEM.L (A7)+,D3-D5/A2-A4 | 4CDF 1C38

save

Purpose Saves a range of data from memory to file.

Usage save <“fileName”> <addr> <numBytes>

Parameters fileName The quoted name of the file to which you want
the data saved.

addr The starting address in memory to save.

numBytes The number of bytes to save.

Example save “savedMem1” 0100 100

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 77

sb

Purpose Sets the value of the byte at the specified address.

Usage sb <addr> <value>

Parameters addr The address of the byte.

value The byte value.

Example sb 0111 0a

Memory set starting at 00000111

sc

Purpose Displays a list of functions on the stack using information stored in
the A6 frame pointer register.

Usage sc [<addr> [<frames>]]

Parameters addr Optional. The address from which to start
listing.

frames Optional. The number of frames to list. You can
specify this only if you specify a value for addr.

Example sc
Calling chain using A6 Links:
 A6 Frame Caller
 00000000 10C68982 cjtkend+0000
 00015086 10C6CA26 __Startup__+0060
 00015066 10C6CCCE PilotMain+0250
 00014FC2 10C0F808 SysAppLaunch+0458
 00014F6E 10C10258 PrvCallWithNewStack+0016
 00013414 10CCFBE0 __Startup__+0060
 000133F4 10CD08CE PilotMain+0036
 000133DA 10CD6D18 EventLoop+0016

Palm Debugger Command Reference
Debugging Window Commands

78 Palm OS Programming Development Tools Guide

sc6

Purpose Lists the A6 stack frame chain, starting at the specified address.

Usage sc6 [<addr> [<frames>]]

Parameters addr Optional. The address from which to start
listing.

frames Optional. The number of frames to list. You can
specify this only if you specify a value for addr.

Comments This command is the same as the sc command.

Example sc
Calling chain using A6 Links:
 A6 Frame Caller
 00000000 10C68982 cjtkend+0000
 00015086 10C6CA26 __Startup__+0060
 00015066 10C6CCCE PilotMain+0250
 00014FC2 10C0F808 SysAppLaunch+0458
 00014F6E 10C10258 PrvCallWithNewStack+0016
 00013414 10CCFBE0 __Startup__+0060
 000133F4 10CD08CE PilotMain+0036
 000133DA 10CD6D18 EventLoop+0016

sc7

Purpose Displays a list of functions on the stack using the stack pointer (A7).
This displays information about functions on the stack that do not
set up frame pointers.

Usage sc7 [<addr> [<frames>]]

Parameters addr Optional. The address from which to start
listing.

frames Optional. The number of frames to list. You can
specify this only if you specify a value for addr.

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 79

Comments Use the sc7 command instead of the standard stack crawl
command, sc, when you want to display information about
routines on the stack that have not set up frame pointers. Note that
this command will sometimes display bogus routines.

Example sc7

Return Addresses on the stack:
 Stack Addr Caller
 00013AFC 00000000
 000133B0 10CD6D18 EventLoop+0016
 00013344 10C1F964 PrvHandleExchangeEvents+0028

sizeof

Purpose Displays the size, in bytes, of a template.

Usage sizeof <template>

Parameters template The name of the template.

Comments You can use the templates command to list the available
templates.

Example sizeof sdword
Size = 4 byte(s)

sl

Purpose Sets the value of the 32-bit long integer at the specified address.

Usage sl <addr> <value>

Parameters addr The address of the 32-bit value.

value The long value.

Example sl 0110 ffffffff
Memory set starting at 00000110

Palm Debugger Command Reference
Debugging Window Commands

80 Palm OS Programming Development Tools Guide

ss

Purpose Breaks into the debugger when the value of the long word at the
specified address changes.

Usage ss [<addr>]

Parameters addr Optional. The address of the 32-bit value. If you
do not specify an address value, the current
program counter location is used.

Example ss 1000F024

storeinfo

Purpose Displays information about a memory store.

Usage storeinfo <cardNum>

Parameters cardNum The card number for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

Comments You can use the storeinfo command in either the Console
window or the debugging window.

Example storeinfo 0

ROM Store:
 version: 0001
 flags: 0000
 name: ROM Store
 creation date: 00000000
 backup date: 00000000
 heap list offset: 00C08208
 init code offset1: 00C0D652
 init code offset2: 00C1471E
 database dirID: 00D20F7E

RAM Store:
 version: 0001

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 81

 flags: 0001
 name: RAM Store 0
 creation date: 00000000
 backup date: 00000000
 heap list offset: 00018100
 init code offset1: 00000000
 init code offset2: 00000000
 database dirID: 0001811F

sw

Purpose Sets the value of the word at the specified address.

Usage sw <addr> <value>

Parameters addr The address of the 16-bit value.

value The word value.

Example sw 0110 ffff
Memory set starting at 00000110

t

Purpose Single steps the processor, stepping over subroutines.

Usage t

Parameters None.

Example t

'SysHandleEvent'
Will Branch
 +$0514 10C0EF00 *BRA.W SysHandleEvent+$0694 ;
10C0F080 |6000 017E

Palm Debugger Command Reference
Debugging Window Commands

82 Palm OS Programming Development Tools Guide

templates

Purpose Lists the names of the debugger templates.

Usage templates

Parameters None.

Example templates

Char
Byte
SByte
Word
SWord
DWord
SDWord

typedef

Purpose Begins a structure definition block.

Usage typedef struct <“name”>

Parameters name The quoted name of the template whose
definition you are beginning.

Comments Use the typedef command in conjunction with the > and typeend
commands to defined structure templates that you can use to
display complex structures with a single memory display (dm)
command.

Example typedef struct “PointType”
> SWord “X”
> SWord “Y”
typeend

Palm Debugger Command Reference
Debugging Window Commands

Palm OS Programming Development Tools Guide 83

typeend

Purpose Ends a structure definition block.

Usage typeend

Parameters None.

Comments Use the typedef command in conjunction with the > and typeend
commands to defined structure templates that you can use to
display complex structures with a single memory display (dm)
command.

Example typedef struct “PointType”
> SWord “X”
> SWord “Y”
typeend

var

Purpose Defines a debugger variable.

Usage var <“name”> [<initialValue>]

Parameters name The quoted name of the variable that you are
defining.

initialValue Optional. The initial value for the variable. If
you are assigning a string value to the variable,
you must quote the initial value.

Example var “testvar” 100

var “testvar” “Hello”
WARNING: redefining variable: testvar

Palm Debugger Command Reference
Debugging Window Commands

84 Palm OS Programming Development Tools Guide

variables

Purpose Lists the names of the debugger variables.

Usage variables

Parameters None.

Example variables

DebOut
SymbolsOn
ReadMemHack
StepRegs
Attached
testvar
testvar2

wh

Purpose Displays system function information for a specified function name
or A-Trap number. Also identifies the memory chunk that contains a
specific address or lists all system functions.

Usage wh [\a <addr>] [<“funcName”> | <ATrapNumber>]

Parameters addr Specifies an address. The wh command displays
the memory chunk that contains this address.

funcName The quoted name of the system function for
which you want information displayed.

ATrapNumber The number of the A-trap number for which
you want information displayed.

Palm Debugger Command Reference
Debugging Command Summary

Palm OS Programming Development Tools Guide 85

Debugging Command Summary

Flow Control Commands

Memory Commands

atb Adds an A-Trap break.

atc Clears an A-Trap break.

atd Displays a list of all A-Trap breaks.

att Attach to the handheld device.

br Sets a breakpoint at the specified address.

brc Clears a breakpoint or all breakpoints.

brd Displays a list of all breakpoints.

cl Clears a breakpoint or all breakpoints.

dx Enables or disables DbgBreak() breaks.

g Continues execution.

gt Sets a temporary breakpoint at the specified
address, and resumes execution from the current
program counter.

reset Resets the memory system and formats both cards.

s Single steps the processor, stepping into
subroutines.

ss Breaks into the debugger when the long word
value at the specified address changes.

t Single steps the processor, stepping over
subroutines.

atr Registers a function name with an A-Trap number.

db Displays the byte value at a specified address.

Palm Debugger Command Reference
Debugging Command Summary

86 Palm OS Programming Development Tools Guide

dl Displays the 32-bit long value at a specified
address.

dm Displays memory for a specified number of bytes
or templates.

dw Displays the 16-bit word value at a specified
address.

fb Searches through a range of memory for a specified
byte value.

fill Fills memory with a specified byte value.

fl Searches through a range of memory for a specified
32-bit long value.

ft Searches through a range of memory for the
specified text.

fw Searches through a range of memory for the
specified 16-bit word value.

il Disassembles code in a specified line range.

sb Sets the value of the byte at the specified address.

sc Lists the A6 stack frame chain, starting at the
specified address.

sc6 Lists the A6 stack frame chain, starting at the
specified address.

sc7 Lists the A7 stack frame chain, starting at the
specified address.

sl Sets the value of the long at the specified address.

sw Sets the value of the word at the specified address.

wh Displays system function information for a
specified function name or A-Trap number. Also
identifies the memory chunk that contains a
specific address or lists all system functions.

Palm Debugger Command Reference
Debugging Command Summary

Palm OS Programming Development Tools Guide 87

Template Commands

Register Commands

Utility Commands

Console Commands

> Defines a structure field.

sizeof Displays the size, in bytes, of a template.

templates Lists the names of the debugger templates.

typedef Begins a structure definition block.

typeend Ends a structure definition block.

reg Displays all registers.

alias Defines or displays an alias.

aliases Displays all debugger alias names.

bootstrap Loads a ROM image into memory on the handheld
device, using the bootstrap mode of the processor.

keywords Lists all debugger keywords.

load Loads the file’s data fork at the specified remote
address.

run Runs a debugger script.

save Saves a range of data from memory to file.

var Defines a debugger variable.

variables Lists the names of the debugger variables.

cardinfo Retrieves information about a memory card.

dir Lists the databases.

dump Dumps a range of memory to a file.

Palm Debugger Command Reference
Debugging Command Summary

88 Palm OS Programming Development Tools Guide

Miscellaneous Debugger Commands

Debugger Environment Variables

hchk Checks a heap.

hd Displays a dump of a memory heap.

hl Lists all of the memory heaps on the specified
memory card.

ht Performs a heap total.

info Displays information on a heap chunk.

opened Lists all currently opened databases.

storeinfo Retrieves information about a memory store.

help
or

?

Displays a list of available commands.

help <cmd>
or

? <cmd>

Displays help for a specific command.

penv Displays debugger environment information.

DebOut A Boolean value that specifies if debug style
output is enabled.

ReadMemHack A Boolean value that specifies if the read memory
hack is enabled.

SymbolsOn A Boolean value that specifies if printing of
disassembly symbols is enabled.

StepRegs A Boolean value that specifies if register values
should be shown after every step.

Palm Debugger Command Reference
Debugging Command Summary

Palm OS Programming Development Tools Guide 89

Predefined Constants
true Integer value 1.

false Integer value 0.

srCmask The status register Carry bit.

srImask The status register Interrupt field mask.

srNmask The status register Negative bit.

srSmask The status register Supervisor bit.

srTmask The status register Trace bit.

srVmask The status register Overflow bit.

srXmask The status register extend bit.

srZmask The status register Zero bit.

Palm Debugger Command Reference
Debugging Command Summary

90 Palm OS Programming Development Tools Guide

Palm OS Programming Development Tools Guide 91

3
Debugger Protocol
Reference
This chapter describes the debugger protocol, which provides an
interface between a debugging target and a debugging host. For
example, the Palm Debugger and the Palm OS® Emulator use this
protocol to exchange commands and information.

IMPORTANT: This chapter describes the version of the Palm
Debugger protocol that shipped on the Metrowerks CodeWarrior
for the Palm™ Operating System, Version 6 CD-ROM. If you are
using a different version, the features in your version might be
different from the features described here.

This chapter covers the following topics:

• “About the Palm Debugger Protocol” on page 91

• “Constants” on page 94

• “Data Structures” on page 97

• “Debugger Protocol Commands” on page 99

• “Summary of Debugger Protocol Packets” on page 118

About the Palm Debugger Protocol
The Palm debugger protocol allows a debugging target, which is
usually a handheld device ROM or an emulator program such as
the Palm OS Emulator, to exchange information with a debugging
host, such as the Palm Debugger or the Metrowerks debugger.

The debugger protocol involves sending packets between the host
and the target. When the user of the host debugging program enters
a command, the host converts that command into one or more

Debugger Protocol Reference
About the Palm Debugger Protocol

92 Palm OS Programming Development Tools Guide

command packets and sends each packet to the debugging target. In
most cases, the target subsequently responds by sending a packet
back to the host.

Packets
There are three packet types used in the debugger protocol:

• The debugging host sends command request packets to the
debugging target.

• The debugging target sends command response packets back to
the host.

• Either the host or the target can send a message packet to the
other.

Although the typical flow of packets involves the host sending a
request and the target sending back a response, although there are a
some exceptions, as follows:

• The host can send some requests to the target that do not
result in a response packet being returned. For example,
when the host sends the Continue command packet to tell
the target to continue execution, the target does not send
back a response packet.

• The target can send response packets to the host without
receiving a request packet. For example, whenever the
debugging target encounters an exception, it sends a State
response packet to the host.

Packet Structure
Each packet consists of a packet header, a variable-length packet
body, and a packet footer, as shown in Figure 3.1.

Debugger Protocol Reference
About the Palm Debugger Protocol

Palm OS Programming Development Tools Guide 93

Figure 3.1 Packet Structure

The Packet Header

The packet header starts with the 24-bit key value $BEEFFD and
includes header information and a checksum of the header itself.

The Packet Body

The packet body contains the command byte, a filler byte, and
between 0 and 270 bytes of data. See “_SysPktBodyCommon” on
page 97 for a description of the structure used to represent the two
byte body header (the command and filler bytes), and see Table 3.1
for a list of the command constants.

The Packet Footer

The packet footer contains a 16-bit CRC of the header and body.
Note that the CRC computation does not include the footer.

$BE

$EF

$ED

destination ID

source ID

type

transaction ID

header checksum

body size

command ID

filler

command data
.
.
.
.

CRC

Header
(10 bytes)

Body
(2 to 272 bytes)

Footer
(2 bytes)

Debugger
Packet

Debugger Protocol Reference
Constants

94 Palm OS Programming Development Tools Guide

Packet Communications
The communications protocol between the host and target is very
simple: the host sends a request packet to the target and waits for a
time-out or for a response from the target.

If a response is not detected within the time-out period, the host
does not retry the request. When a response does not come back
before timing out, it usually indicates that one of two things is
happening:

• the debugging target is busy executing code and has not
encountered an exception

• the state of the debugging target has degenerated so badly
that it cannot respond

The host has the option of displaying a message to the user to
inform him or her that the debugging target is not responding.

Constants
This section describes the constants and structure types that are
used with the packets for various commands.

Packet Constants
#define sysPktMaxMemChunk 256
#define sysPktMaxBodySize (sysPktMaxMemChunk+16)
#define sysPktMaxNameLen 32

sysPktMaxMemChunk
The maximum number of bytes that can be read
by the Read Memory command or written by
the Write Memory command.

sysPktMaxBodySize
The maximum number of bytes in a request or
response packet.

sysPktMaxNameLen
The maximum length of a function name.

Debugger Protocol Reference
Constants

Palm OS Programming Development Tools Guide 95

State Constants
#define sysPktStateRspInstWords 15

sysPktStateRespInstWords
The number of remote code words sent in the
response packet for the State command.

Breakpoint Constants
#define dbgNormalBreakpoints 5
#define dbgTempBPIndex dbNormalBreakpoints
#define dbgTotalBreakpoints (dbgTempBPIndex+1)

dbgNormalBreakpoints
The number of normal breakpoints available in
the debugging target.

dbgTempBPIndex
The index in the breakpoints array of the
temporary breakpoint.

dbgTotalBreakpoints
The total number of breakpoints in the
breakpoints array, including the normal
breakpoints and the temporary breakpoint.

Command Constants
Each command is represented by a single byte constant. The upper
bit of each request command is clear, and the upper bit of each
response command is set. Table 3.1 shows the command constants.

Table 3.1 Debugger protocol command constants

Command Request constant Response constant

Continue sysPktContinueCmd N/A

Find sysPktFindCmd sysPktFindRsp

Get
Breakpoints

sysPktGetBreakpointsCmd sysPktGetBreakpointsRsp

Get Routine
Name

sysPktGetRtnNameCmd sysPktGetRtnNameRsp

Debugger Protocol Reference
Constants

96 Palm OS Programming Development Tools Guide

Get Trap
Breaks

sysPktGetTrapBreaksCmd sysPktGetTrapBreaksRsp

Get Trap
Conditionals

sysPktGetTrap
ConditionalsCmd

sysPktGetTrap
ConditionalsRsp

Message sysPktRemoteMsgCmd N/A

Read Memory sysPktReadMemCmd sysPktReadMemRsp

Read
Registers

sysPktReadRegsCmd sysPktReadRegsRsp

RPC sysPktRPCCmd sysPktRPCRsp

Set
Breakpoints

sysPktSetBreakpointsCmd sysPktSetBreakpointsRsp

Set Trap
Breaks

sysPktSetTrapBreaksCmd sysPktSetTrapBreaksRsp

Set Trap
Conditionals

sysPktSetTrap
ConditionalsCmd

sysPktSetTrap
ConditionalsRsp

State sysPktStateCmd sysPktStateRsp

Toggle
Debugger
Breaks

sysPktDbgBreakToggleCmd sysPktDbgBreakToggleRsp

Write Memory sysPktWriteMemCmd sysPktWriteMemRsp

Write
Registers

sysPktWriteRegsCmd sysPktWriteRegsRsp

Table 3.1 Debugger protocol command constants (continued)

Command Request constant Response constant

Debugger Protocol Reference
Data Structures

Palm OS Programming Development Tools Guide 97

Data Structures
This section describes the data structures used with the request and
response packets for the debugger protocol commands.

_SysPktBodyCommon
The _SysPktBodyCommon macro defines the fields common to
every request and response packet.

#define _sysPktBodyCommon \
Byte command; \
Byte _filler;

Fields

command The 1-byte command value for the packet.

_filler Included for alignment only. Not used.

SysPktBodyType
The SysPktBodyType represents a command packet that is sent to
or received from the debugging target.

typedef struct SysPktBodyType
{

_SysPktBodyCommon;
Byte data[sysPktMaxBodySize-2];

} SysPktBodyType;

Fields

_SysPktBodyCommon
The command header for the packet.

data The packet data.

Debugger Protocol Reference
Data Structures

98 Palm OS Programming Development Tools Guide

SysPktRPCParamType
The SysPktRPCParamType is used to send a parameter in a remote
procedure call. See the RPC command for more information.

typedef struct SysPktRPCParamInfo
{

Byte byRef;
Byte size;
Word data[?];

} SysPktRPCParamType;

Fields

byRef Set to 1 if the parameter is passed by reference.

size The number of bytes in the data array. This
must be an even number.

data The parameter data.

BreakpointType
The BreakpointType structure is used to represent the status of a
single breakpoint on the debugging target.

typedef struct BreakpointType
{

Ptr addr;
Boolean enabled;
Boolean installed;

} BreakpointType;

Fields

addr The address of the breakpoint. If this is set to 0,
the breakpoint is not in use.

enabled A Boolean value. This is TRUE if the breakpoint
is currently enabled, and FALSE if not.

installed Included for correct alignment only. Not used.

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 99

Debugger Protocol Commands
This section describes each command that you can send to the
debugging target, including a description of the response packet
that the target sends back.

Continue

Purpose Tells the debugging target to continue execution.

Comments This command usually gets sent when the user specifies the Go
command. Once the debugging target continues execution, the
debugger is not reentered until a breakpoint or other exception is
encountered.

NOTE: The debugging target does not send a response to this
command.

Commands The Continue request command is defined as follows:

#define sysPktContinueCmd0x07

Request Packet typedef struct SysPktContinueCmdType
{

_sysPktBodyCommon;
M68KresgType regs;
Boolean stepSpy;
DWord ssAddr;
DWord ssCount;
DWord ssCheckSum;

}SysPktContinueCmdType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> regs The new values for the debugging target
processor registers. The new register values are
stored in sequential order: D0 to D7, followed
by A0 to A6.

Debugger Protocol Reference
Debugger Protocol Commands

100 Palm OS Programming Development Tools Guide

—> stepSpy A Boolean value. If this is TRUE, the debugging
target continues execution until the value that
starts at the specified step-spy address changes.
If this is FALSE, the debugging target continue
execution until a breakpoint or other exception
is encountered.

—> ssAddr The step-spy starting address. An exception is
generated when the value starting at this
address, for ssCount bytes, changes on the
debugging target.

—> ssCount The number of bytes in the “spy” value.

—> ssCheckSum A checksum for the “spy” value.

Find

Purpose Searches for data in memory on the debugging target.

Commands The Find request and response commands are defined as follows:

#define sysPktFindCmd0x13
#define sysPktFindRsp0x93

Request Packet typedef struct SysPktFindCmdType
{

_sysPktBodyCommon;
DWord firstAddr;
DWord lastAddr;
Word numBytes
Boolean caseInsensitive;
Byte searchData[?];

}SysPktFindCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> firstAddr The starting address of the memory range on
the debugging target to search for the data.

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 101

—> lastAddr The ending address of the memory range on
the debugging target to search for the data.

—> numBytes The number of bytes of data in the search
string.

—> searchData The search string. The length of this array is
defined by the value of the numBytes field.

Response
Packet

typedef struct SysPktFindRspType
{

_sysPktBodyCommon;
DWord addr;
Boolean found;

}SysPktFindRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— addr The address of the data string in memory on
the debugging target.

<— found A Boolean value. If this is TRUE, the search
string was found on the debugging target, and
the value of addr is valid. If this is FALSE, the
search string was not found, and the value of
addr is not valid.

Get Breakpoints

Purpose Retrieves the current breakpoint settings from the debugging target.

Comments The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible
breakpoint.

If a breakpoint is currently disabled on the debugging target, the
enabled field for that breakpoint is set to 0.

If a breakpoint address is set to 0, the breakpoint is not currently in
use.

Debugger Protocol Reference
Debugger Protocol Commands

102 Palm OS Programming Development Tools Guide

The dbgTotalBreakpoints constant is described in “Breakpoint
Constants” on page 95.

Commands The Get Breakpoints command request and response
commands are defined as follows:

#define sysPktGetBreakpointsCmd 0x0B
#define sysPktGetBreakpointsRsp 0x8B

Request Packet typedef struct SysPktGetBreakpointsCmdType
{

_sysPktBodyCommon;
}SysPktGetBreakpointsCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktGetBreakpointsRspType
{

_sysPktBodyCommon;
BreakpointType db[dbgTotalBreakpoints];

}SysPktGetBreakpointsRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

Get Routine Name

Purpose Determines the name, starting address, and ending address of the
function that contains the specified address.

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 103

Comments The name of each function is imbedded into the code when it gets
compiled. The debugging target can scan forward and backward in
the code to determine the start and end addresses for each function.

Commands The Get Routine Name command request and response
commands are defined as follows:

#define sysPktGetRtnNameCmd 0x04
#define sysPktGetRtnNameRsp 0x84

Request Packet typedef struct SysPktRtnNameCmdType
{

_sysPktBodyCommon;
void* address

}SysPktRtnNameCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> address The code address whose function name you
want to discover.

Response
Packet

typedef struct SysPktRtnNameRspType
{

_sysPktBodyCommon;
void* address;
void* startAddr;
void* endAddr;
charname[sysPktMaxNameLen];

}SysPktRtnNameRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— address The code address whose function name was
determined. This is the same address that was
specified in the request packet.

<— startAddr The starting address in target memory of the
function that includes the address.

Debugger Protocol Reference
Debugger Protocol Commands

104 Palm OS Programming Development Tools Guide

<— endAddr The ending address in target memory of the
function that includes the address. If a function
name could not be found, this is the last
address that was scanned.

<— name The name of the function that includes the
address. This is a null-terminated string. If a
function name could not be found, this is the
null string.

Get Trap Breaks

Purpose Retrieves the settings for the trap breaks on the debugging target.

Comments Trap breaks are used to force the debugging target to enter the
debugger when a particular system trap is called.

The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap break is a single word value that contains the system trap
number.

Commands The Get Trap Breaks request and response commands are
defined as follows:

#define sysPktGetTrapBreaksCmd 0x10
#define sysPktGetTrapBreaksRsp 0x90

Request Packet typedef struct SysPktGetTrapBreaksCmdType
{

_sysPktBodyCommon;
}SysPktGetTrapBreaksCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 105

Response
Packet

typedef struct SysPktGetTrapBreaksRspType
{

_sysPktBodyCommon;
Word trapBP[dbgTotalTrapBreaks];

}SysPktGetTrapBreaksRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— trapBP An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
break is not used.

Get Trap Conditionals

Purpose Retrieves the trap conditionals values from the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Get Trap Conditionals request and response commands
are defined as follows:

#define sysPktGetTrapConditionsCmd 0x14
#define sysPktGetTrapConditionsRsp 0x94

Request Packet typedef struct SysPktGetTrapConditionsCmdType
{

_sysPktBodyCommon;
}SysPktGetTrapConditionsCmdType

Debugger Protocol Reference
Debugger Protocol Commands

106 Palm OS Programming Development Tools Guide

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktGetTrapConditionsRspType
{

_sysPktBodyCommon;
Word trapParam[dbgTotalTrapBreaks];

}SysPktGetTrapConditionsRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used.

Message

Purpose Sends a message to display on the debugging target.

Comments Application can compile debugger messages into their code by
calling the DbgMessage function.

The debugging target does not send back a response packet for this
command.

Commands The Message request command is defined as follows:

#define sysPktRemoteMsgCmd 0x7F

Request Packet typedef struct SysPktRemoteMsgCmdType
{

_sysPktBodyCommon;
Byte text[1];

}SysPktRemoteMsgCmdType;

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 107

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> text

Read Memory

Purpose Reads memory values from the debugging target.

Comments This command can read up to sysPktMaxMemChunk bytes of
memory. The actual size of the response packet depends on the
number of bytes requested in the request packet.

Commands The Read Memory command request and response commands are
defined as follows:

#define sysPktReadMemCmd 0x01
#define sysPktReadMemRsp 0x81

Request Packet typedef struct SysPktReadMemCmdType
{

_sysPktBodyCommon;
void* address;
Word numBytes;

}SysPktReadMemCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> address The address in target memory from which to
read values.

—> numBytes The number of bytes to read from target
memory.

Response
Packet

typedef struct SysPktReadMemRspType
{

_sysPktBodyCommon;
//Byte data[?];

}SysPktReadMemRspType;

Debugger Protocol Reference
Debugger Protocol Commands

108 Palm OS Programming Development Tools Guide

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— data The returned data. The number of bytes in this
field matches the numBytes value in the
request packet.

Read Registers

Purpose Retrieves the value of each of the target processor registers.

Comments The eight data registers are stored in the response packet body
sequentially, from D0 to D7. The seven address registers are stored
in the response packet body sequentially, from A0 to A6.

Commands The Read Registers command request and response commands
are defined as follows:

#define sysPktReadRegsCmd 0x05
#define sysPktReadRegsRsp 0x85

Request Packet typedef struct SysPktReadRegsCmdType
{

_sysPktBodyCommon;
}SysPktReadRegsCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktReadRegsRspType
{

_sysPktBodyCommon;
M68KRegsType reg;

}SysPktReadRegsRspType;

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 109

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— reg The register values in sequential order: D0 to
D7, followed by A0 to A6.

RPC

Purpose Sends a remote procedure call to the debugging target.

Commands The RPC request and response commands are defined as follows:

#define sysPktRPCCmd 0x0A
#define sysPktRPCRsp 0x8A

Request Packet typedef struct SysPktRPCType
{

_sysPktBodyCommon;
Word trapWord;
DWord resultD0;
DWord resultD0;
Word numParams;
SysPktRPCParamType param[?];

}

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> trapWord The system trap to call.

—> resultD0 The result from the D0 register.

—> resultA0 The result from the A0 register.

—> numParams The number of RPC parameter structures in the
param array that follows.

—> param An array of RPC parameter structures, as
described in SysPktRPCParamType.

Debugger Protocol Reference
Debugger Protocol Commands

110 Palm OS Programming Development Tools Guide

Set Breakpoints

Purpose Sets breakpoints on the debugging target.

Comments The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible
breakpoint. If a breakpoint is currently disabled on the debugging
target, the enabled field for that breakpoint is set to 0.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Set Breakpoints command request and response
commands are defined as follows:

#define sysPktSetBreakpointsCmd 0x0C
#define sysPktSetBreakpointsRsp 0x8C

Request Packet typedef struct SysPktSetBreakpointsCmdType
{

_sysPktBodyCommon;
BreakpointType db[dbgTotalBreakpoints];

}SysPktSetBreakpointsCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

Response
Packet

typedef struct SysPktSetBreakpointsRspType
{

_sysPktBodyCommon;
}SysPktSetBreakpointsRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 111

Set Trap Breaks

Purpose Sets breakpoints on the debugging target.

Comments The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break. If a trap break is currently disabled on the debugging target,
the value of that break is set to 0.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Set Breakpoints command request and response
commands are defined as follows:

#define sysPktSetTrapBreaksCmd 0x0C
#define sysPktSetTrapBreaksRsp 0x8C

Request Packet typedef struct SysPktSetTrapBreakssCmdType
{

_sysPktBodyCommon;
Word trapBP[dbgTotalBreakpoints];

}SysPktSetTrapBreaksCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> trapBP An array with an entry for each of the possible
trap breaks. If the value of an entry is 0, the
break is not currently in use.

Response
Packet

typedef struct SysPktSetTrapBreaksRspType
{

_sysPktBodyCommon;
}SysPktSetTrapBreaksRspType

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
Debugger Protocol Commands

112 Palm OS Programming Development Tools Guide

Set Trap Conditionals

Purpose Sets the trap conditionals values for the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Set Trap Conditionals request and response commands
are defined as follows:

#define sysPktSetTrapConditionsCmd 0x15
#define sysPktSetTrapConditionsRsp 0x95

Request Packet typedef struct SysPktSetTrapConditionsCmdType
{

_sysPktBodyCommon;
Word trapParam[dbgTotalTrapBreaks];

}SysPktSetTrapConditionsCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used.

Response
Packet

typedef struct SysPktSetTrapConditionsRspType
{

_sysPktBodyCommon;
}SysPktSetTrapConditionsRspType

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 113

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

State

Purpose Sent by the host program to query the current state of the debugging
target, and sent by the target whenever it encounters an exception
and enters the debugger.

Comments The debugging target sends the State response packet whenever it
enters the debugger for any reason, including a breakpoint, a bus
error, a single step, or any other reason.

Commands The State request and response commands are defined as follows:

#define sysPktStateCmd 0x00
#define sysPktStateRsp 0x80

Request Packet typedef struct SysPktStateCmdType
{

_sysPktBodyCommon;
} SysPktStateCmdType

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktStateRspType
{

_sysPktBodyCommon;
Boolean resetted;
Word exceptionId;
M68KregsType reg;
Word inst[sysPktStateRspInstWords];
BreakpointType bp[dbgTotalBreakpoints];
void* startAddr;
void* endAddr;
char name[sysPktMaxNameLen];
Byte trapTableRev;

} SysPktStateRspType;

Debugger Protocol Reference
Debugger Protocol Commands

114 Palm OS Programming Development Tools Guide

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<— resetted A Boolean value. This is TRUE if the debugging
target has just been reset.

<— exceptionId
The ID of the exception that caused the
debugger to be entered.

<— reg The register values in sequential order: D0 to
D7, followed by A0 to A6.

<— inst A buffer of the instructions starting at the
current program counter on the debugging
target.

<— bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

<— startAddr The starting address of the function that
generated the exception.

<— endAddr The ending address of the function that
generated the exception.

<— name The name of the function that generated the
exception. This is a null-terminated string. If no
name can be found, this is the null string.

<— trapTableRev
The revision number of the trap table on the
debugging target. You can use this to determine
when the trap table cache on the host computer
is invalid.

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 115

Toggle Debugger Breaks

Purpose Enables or disables breakpoints that have been compiled into the
code.

Comments A breakpoint that has been compiled into the code is a special TRAP
instruction that is generated when source code includes calls to the
DbgBreak and DbgSrcBreak functions.

Sending this command toggles the debugging target between
enabling and disabling these breakpoints.

Commands The Toggle Debugger Breaks request and response commands
are defined as follows:

#define sysPktDbgBreakToggleCmd 0x0D
#define sysPktDbgBreakToggleRsp 0x8D

Request Packet typedef struct SysPktDbgBreakToggleCmdType
{

_sysPktBodyCommon;
}SysPktDbgBreakToggleCmdType;

Fields

—>_sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktDbgBreakToggleRspType
{

_sysPktBodyCommon;
Boolean newState

}SysPktDbgBreakToggleRspType;

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Debugger Protocol Reference
Debugger Protocol Commands

116 Palm OS Programming Development Tools Guide

<— newState A Boolean value. If this is set to TRUE, the new
state has been set to enable breakpoints that
were compiled into the code. If this is set to
FALSE, the new state has been set to disable
breakpoints that were compiled into the code.

Write Memory

Purpose Writes memory values to the debugging target.

Comments This command can write up to sysPktMaxMemChunk bytes of
memory. The actual size of the request packet depends on the
number of bytes that you want to write.

Commands The Write Memory command request and response commands are
defined as follows:

#define sysPktWriteMemCmd 0x02
#define sysPktWriteMemRsp 0x82

Request Packet typedef struct SysPktWriteMemCmdType
{

_sysPktBodyCommon;
void* address;
Word numBytes;
//Byte data[?]

}SysPktWriteMemCmdType;

Fields

—> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> address The address in target memory to which the
values are written.

--> numBytes The number of bytes to write.

--> data The bytes to write into target memory. The size
of this field is defined by the numBytes
parameter.

Debugger Protocol Reference
Debugger Protocol Commands

Palm OS Programming Development Tools Guide 117

Response
Packet

typedef struct SysPktWriteMemRspType
{

_sysPktBodyCommon;
}SysPktWriteMemRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Write Registers

Purpose Sets the value of each of the target processor registers.

Comments The eight data registers are stored in the request packet body
sequentially, from D0 to D7. The seven address registers are stored
in the request packet body sequentially, from A0 to A6.

Commands The Write Registers command request and response
commands are defined as follows:

#define sysPktWriteRegsCmd 0x06
#define sysPktWriteRegsRsp 0x86

Request Packet typedef struct SysPktWriteRegsCmdType
{

_sysPktBodyCommon;
M68KRegsType reg;

}SysPktWriteRegsCmdType;

Fields

-->_sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

—> reg The new register values in sequential order: D0
to D7, followed by A0 to A6.

Response
Packet

typedef struct SysPktWriteRegsRspType
{

_sysPktBodyCommon;
}SysPktWriteRegsRspType;

Debugger Protocol Reference
Summary of Debugger Protocol Packets

118 Palm OS Programming Development Tools Guide

Fields

<— _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Summary of Debugger Protocol Packets
Table 3.2 summarizes the command packets that you can use with
the debugger protocol.

Table 3.2 Debugger protocol command packets

Command Description

Continue Tells the debugging target to continue execution.

Find Searches for data in memory on the debugging target.

Get Breakpoints Retrieves the current breakpoint settings from the
debugging target.

Get Routine Name Determines the name, starting address, and ending
address of the function that contains the specified
address.

Get Trap Breaks Retrieves the settings for the trap breaks on the
debugging target.

Get Trap Conditionals Retrieves the trap conditionals values from the
debugging target.

Message Sends a message to display on the debugging target.

Read Memory Reads memory values from the debugging target.

Read Registers Retrieves the value of each of the target processor
registers.

RPC Sends a remote procedure call to the debugging target.

Set Breakpoints Sets breakpoints on the debugging target.

Set Trap Breaks Sets breakpoints on the debugging target.

Debugger Protocol Reference
Summary of Debugger Protocol Packets

Palm OS Programming Development Tools Guide 119

Set Trap Conditionals Sets the trap conditionals values for the debugging
target.

State Sent by the host program to query the current state of
the debugging target, and sent by the target whenever
it encounters an exception and enters the debugger.

Toggle Debugger
Breaks

Enables or disables breakpoints that have been
compiled into the code.

Write Memory Writes memory values to the debugging target.

Write Registers Sets the value of each of the target processor registers.

Table 3.2 Debugger protocol command packets (continued)

Command Description

Palm OS Programming Development Tools Guide 121

4
Using the Console
Window
This chapter describes the console window, which you can use with
Palm Debugger, Palm Simulator, and the Metrowerks CodeWarrior
environment to perform maintenance and high-level debugging of a
Palm™ handheld device.

The following topics are covered in this chapter:

• “About the Console Window”

• “Connecting the Console Window” on page 122

• “Entering Console Window Commands” on page 125

• “Command Syntax” on page 128

• “Console Window Commands” on page 130

• “Console Command Summary” on page 166

About the Console Window
The console window interfaces with a handheld device by sending
information packets to and receiving information packets from the
console nub on the device. The console interface provides a number
of commands, which are used primarily for administration of
databases and heap testing on handheld devices.

The console is available in three environments:

• as a separate window for sending and receiving commands
in the Palm Debugger program, which is described in
Chapter 1, “Using Palm Debugger.”

• as a separate window that you can open from within Palm
Simulator program, which is described in Chapter 1, “Using
Palm Simulator.”

Using the Console Window
Connecting the Console Window

122 Palm OS Programming Development Tools Guide

• as a separate window that you can open within the
Metrowerks CodeWarrior environment.

The console window provides the same commands and same
interface in all three environments.

To use the console commands, you must connect your desktop
computer with the console nub on the device, as described in the
next section, Connecting the Console Window.

To learn more about using console commands, see the section
“Entering Console Window Commands” on page 125. For a
complete reference description of each console command, see
“Console Window Commands” on page 130. The commands are
summarized in “Console Command Summary” on page 166.

Connecting the Console Window

Activating Console Input
To send console commands to the handheld device, you must
connect your desktop computer to the handheld device, activate the
console nub on the device, and then type commands into the
console window.

The console nub runs as a background thread on the device,
listening for commands on the serial or USB port. To activate the
console nub, use the , as described in “Using Shortcut Numbers to
Activate the Windows” on page 123.

When the console nub activates, it sends out a “Ready” message. If
your desktop computer is connected to the device when the nub is
activated, this message will display in the console window.

Using the Console Window
Connecting the Console Window

Palm OS Programming Development Tools Guide 123

IMPORTANT: The console nub activates at 57,600 baud, and
your port configuration must match this is you are connecting over
a serial port. You must set the connection parameters correctly for
communications to work.

After you activate the console nub on the handheld device, the
nub prevents other applications, including HotSync® from using
the serial port. You have to soft-reset the handheld device before
the port can be used.

Verifying Your Connection

To verify your device connection, you can type one of the simple
console commands, such as dir or hl 0. If your connection is
working and the console nub is active on the handheld device, you
will see a list of memory heaps displayed in the window.

If the console nub is not running on the handheld device, or if the
communications connection is not correctly configured, you will see
an error message:

Error $00000404 occurred

If you are certain that the console nub is running on the handheld,
you need to set the connection parameters correctly. If you are using
the console with Palm Debugger, you can use the Communications
menu to set the parameters.

Using Shortcut Numbers to Activate the
Windows
Palm OS responds to a number of “hidden” shortcuts for debugging
your programs, including shortcuts for activating the console nub
on the handheld device. You generate each of these shortcuts by
drawing characters on your Palm Powered™ device, or by drawing
them in the Palm OS® Emulator emulator program, if you are using
Palm OS Emulator to debug your program.

Using the Console Window
Connecting the Console Window

124 Palm OS Programming Development Tools Guide

NOTE: If you open the Find dialog box on the handheld device
before entering a shortcut number, you get visual feedback as
you draw the strokes.

To enter a shortcut number, follow these steps:

1. On your Palm Powered device, or in the emulator program,
draw the shortcut symbol. This is a lowercase, cursive “L”
character, drawn as follows:

2. Next, tap the stylus twice, to generate a dot (a period).
3. Next, draw a number character in the number entry portion

of the device’s text entry area. Table 4.1 shows the different
shortcut numbers that you can use.
For example, to activate the console nub on the handheld
device, enter the follow sequence:

.2

Using the Console Window
Entering Console Window Commands

Palm OS Programming Development Tools Guide 125

NOTE: These debugging shortcuts leave the device in a mode
that requires a soft reset. To perform a soft reset, press the reset
button on the back of the handheld with a blunt instrument, such
as a paper clip.

Entering Console Window Commands
You use the console window to enter console commands, which are
typically used for administrative tasks such as managing databases
on the handheld device. Commands that you type into the console
window are sent to the console nub on the handheld device, and the
results sent back from the device are displayed in the console
window.

Table 4.1 Shortcut Numbers for Debugging

Number Description Notes

The device enters debugger
mode, and waits for a low-level
debugger to connect. A flashing
square appears in the top left
corner of the device.

This mode opens a serial port, which
drains power over time.

You must perform a soft reset or use the
debugger’s reset command to exit this
mode.

The device enters console
mode, and waits for
communication, typically from
a high-level debugger.

This mode opens a serial port, which
drains power over time.

You must perform a soft reset to exit this
mode.

The device’s automatic power-
off feature is disabled.

You can still use the device’s power
button to power it on and off. Note that
your batteries can drain quickly with
automatic power-off disabled.

You must perform a soft reset to exit this
mode.

.1

.2

.3

Using the Console Window
Entering Console Window Commands

126 Palm OS Programming Development Tools Guide

NOTE: Console command input is not case sensitive.

Table 4.2 shows the most commonly used console window
commands.

Listing 4.1 shows an example of using console commands. In this
example, boldface is used to denote commands that you type.

Listing 4.1 Importing a Database into the Handheld Device

import 0 “C:Documents\MyDbs\Tex2HexApp.prc”

Creating Database on card 0
name: Text to Hex
type appl, creator TxHx

Importing resource 'code'=0....
Importing resource 'data'=0....
Importing resource 'pref'=0....
Importing resource 'rloc'=0....
Importing resource 'code'=1....
Importing resource 'tFRM'=1000....
Importing resource 'tver'=1....
Importing resource 'tAIB'=1000....
Importing resource 'Tbmp'=1000....
Importing resource 'Tbmp'=1001....
Importing resource 'MBAR'=1000....
Importing resource 'Talt'=1000....

Table 4.2 Commonly Used Console Commands

Command Description

del Deletes a database from the handheld device.

dir Displays a list of the databases on the handheld
device.

export Copies a Palm OS database from the handheld
device to the desktop computer.

import Copies a Palm OS database from the desktop
computer to the handheld device.

Using the Console Window
Entering Console Window Commands

Palm OS Programming Development Tools Guide 127

Importing resource 'Talt'=1001....
Success!!

dir 0
name ID total data
--
*System 00D20A44 392.691 Kb 390.361 Kb
*AMX 00D209C4 20.275 Kb 20.123 Kb
*UIAppShell 00D20944 1.327 Kb 1.175 Kb
*PADHTAL Library 00D208E2 7.772 Kb 7.674 Kb
*IrDA Library 00D20876 39.518 Kb 39.402 Kb
*Net Library 00D207E2 86.968 Kb 86.780 Kb
*PPP NetIF 00D2073A 30.462 Kb 30.238 Kb
*SLIP NetIF 00D20692 15.812 Kb 15.588 Kb
*Loopback NetIF 00D20630 1.810 Kb 1.712 Kb
*MS-CHAP Support 00D205C4 4.342 Kb 4.226 Kb
*Network 00D203D2 40.442 Kb 39.624 Kb
*Address Book 00D20226 59.825 Kb 59.133 Kb
*Calculator 00D2002A 14.597 Kb 13.761 Kb
*Date Book 00D1FCF8 106.200 Kb 104.806 Kb
*Launcher 00D1FA98 36.633 Kb 35.617 Kb
*Memo Pad 00D1F91E 24.267 Kb 23.665 Kb
*Preferences 00D1F876 1.403 Kb 1.179 Kb
*Security 00D1F706 8.414 Kb 7.830 Kb
*HotSync 00D1F334 39.078 Kb 37.396 Kb
*To Do List 00D1F1E2 33.232 Kb 32.702 Kb
*Digitizer 00D1F126 2.002 Kb 1.742 Kb
*General 00D1EFE8 8.749 Kb 8.255 Kb
*Formats 00D1EF4A 4.732 Kb 4.526 Kb
*ShortCuts 00D1EE34 6.499 Kb 6.077 Kb
*Owner 00D1ED5A 4.095 Kb 3.781 Kb
*Buttons 00D1EC4E 7.419 Kb 7.015 Kb
*Modem 00D1EB74 8.222 Kb 7.908 Kb
*Mail 00D1E838 59.765 Kb 58.353 Kb
*Expense 00D1E614 42.304 Kb 41.396 Kb
*Unsaved Preferences 0001811B 0.898 Kb 0.550 Kb
*Net Prefs 00018133 0.084 Kb 0.000 Kb
 AddressDB 00018137 66.149 Kb 51.945 Kb
 MemoDB 0001815F 2.186 Kb 1.902 Kb
 ToDoDB 00018173 1.000 Kb 0.876 Kb
 MailDB 0001817F 1.033 Kb 0.929 Kb
 DatebookDB 000181EB 53.162 Kb 29.678 Kb
 System MIDI Sounds 000181B3 1.066 Kb 0.842 Kb
*Saved Preferences 00018123 3.753 Kb 3.031 Kb
 NetworkDB 0001818B 0.986 Kb 0.722 Kb
*Giraffe High Score 00018273 0.126 Kb 0.020 Kb
 Datebk3DB 0001827B 0.084 Kb 0.000 Kb
 ReDoDB 0001827F 0.084 Kb 0.000 Kb

Using the Console Window
Command Syntax

128 Palm OS Programming Development Tools Guide

 LauncherDB 0001814F 0.294 Kb 0.190 Kb
*MineHunt 00018287 9.810 Kb 9.264 Kb
*SubHunt 000182DF 17.700 Kb 16.758 Kb
*Puzzle 0001837F 5.256 Kb 4.886 Kb
*HardBall 000183B7 18.877 Kb 18.177 Kb
 Pictures 0001842B 0.084 Kb 0.000 Kb
*Jot 0001842F 120.409 Kb 119.841 Kb
*Graffiti ShortCuts 001FFE7F 2.872 Kb 2.766 Kb
*UnDupe 001FFE87 9.462 Kb 9.070 Kb
*WordView 001FFEC3 17.320 Kb 16.752 Kb
*SheetView 001FFF1F 56.753 Kb 55.877 Kb
 AOU Birds of NA 001FFE15 130.265 Kb 90.021 Kb
 ExpenseDB 001FBCB5 0.150 Kb 0.046 Kb
 DocsToGoDB 001FBCC1 0.326 Kb 0.202 Kb
 birds.PDB 001FBCD1 0.709 Kb 0.585 Kb
 foo 0001812F 0.084 Kb 0.000 Kb
*Text To Hex 001FFF85 34.725 Kb 33.827 Kb

Total: 59

These and all of the other console commands are described in detail
in “Console Window Commands” on page 130.

Command Syntax
This chapter uses the following syntax to specify the format of
debugger commands:

commandName <parameter> [options]

commandName The name of the command.

parameter Parameter(s) for the command. Each parameter
name is enclosed in angle brackets (< and >).

Sometimes a parameter can be one value or
another. In this case the parameter names are
bracketed by parentheses and separated by
the | character.

options Optional flags that you can specify with the
command. Note that options are specified with
the dash (-) character in the console window.

Using the Console Window
Command Syntax

Palm OS Programming Development Tools Guide 129

NOTE: Any portion of a command that is shown enclosed in
square brackets (“[” and “]”) is optional.

The following is an example of a command definition

dir (<cardNum>|<srchOptions>) [displayOptions]

The dir command takes either a card number of a search
specification, followed by display options.

Here are two examples of the dir command sent from the console
window:

dir 0 -a
dir -t rsrc

Specifying Command Options

All command options and some command parameters are specified
as flags that begin with a dash. For example:

-c
-enable

Some flags are followed by a keyword or value. You must leave
white space between the flag and the value. For example:

-f D:\temp\myLogFile
-t Rsrc

NOTE: You use the dash (-) character to specify options for
console commands. If you are using Palm Debugger, you must
use the backslash (\) character to specify options for commands
that you type in the debugging window; this is because the
expression parser used for debugging commands interprets the
dash as a minus sign.

Using the Console Window
Console Window Commands

130 Palm OS Programming Development Tools Guide

Specifying Numeric and Address Values
Many of the console commands take address or numeric arguments.
You can specify these values in hexadecimal, decimal, or binary. All
values are assumed to be hexadecimal unless preceded by a sign
that specifies decimal (#) or binary (%). Table 4.3 shows values
specified as binary, decimal, and hexadecimal in a debugging
command:

Console Window Commands
You use the console window to send commands to the console nub
that is running on the handheld device.

This section provides a description of all of the commands in
alphabetical order. For convenience, the commands are categorized
here:

Table 4.3 Specifying Numeric Values in Palm Debugger

Hex value Decimal value Binary value

64 or $64 #100 %01100100

F5 or $F5 #245 %11110101

100 or $100 #256 %100000000

Table 4.4 Console Window Command Categories

Command category Commands

Card Information cardformat, cardinfo, and storeinfo.

Chunk Utility free, info, lock, new, resize, setowner, and unlock.

Database Utility close, create, del, dir, export, import, open,
opened, and setinfo.

Debugging Utility dm, gdb, mdebug, and sb.

Gremlin gremlin and gremlinoff.

Heap Utility hc, hchk, hd, hf, hi, hl, hs, ht, and htorture.

Host Control help, log, and saveimages.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 131

addrecord

Purpose Adds a record to a database.

Usage addrecord <accessPtr> <index> <recordText>

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

recordText The record data.

addresource

Purpose Adds a resource to a database.

Usage addresource <accessPtr> -t <type> -id <id>
<resourceText>

Parameters accessPtr A pointer to the database.

type The type of the resource that you are adding.

id The ID for the resource that you are adding.

resourceText The resource data.

Miscellaneous Utility simsync and sysalarmdump.

Record Utility addrecord, delrecord, detachrecord, findrecord,
listrecords, moverecord, and setrecordinfo.

Resource Utility addresource, attachresource, changeresource,
delresource, detachresource, listresources,and
setresourceinfo.

System battery, coldboot, doze, exit, feature, kinfo,
launch, performance, poweron, reset, sleep, and
switch.

Table 4.4 Console Window Command Categories (continued)

Command category Commands

Using the Console Window
Console Window Commands

132 Palm OS Programming Development Tools Guide

attachrecord

Purpose Attaches a record to a database.

Usage attachrecord <accessPtr> <recordHandle> <index>
[options]

Parameters accessPtr A pointer to the database.

recordHandle A handle to the record that you are attaching to
the database.

index The index of the record.

options Optional. You can specify the following option:

-r Replaces the existing record with the
same index, if one exists.

attachresource

Purpose Attaches a resource to a database.

Usage attachrecord <accessPtr> <recordHandle> <index>
[options]

Parameters accessPtr A pointer to the database.

recordHandle A handle to the resource that you are attaching
to the database.

index The index of the resource.

options Optional. You can specify the following option:

-r Replaces the existing resource with the
same index, if one exists.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 133

battery

Purpose A battery utility command for performing battery operations.

Usage battery [options]

Parameters options Optional. Specifies the battery operation to
perform. Use one of the following values:

–rStart <deltaSeconds>
Start radio charging in the number of
seconds specified by deltaSeconds.

–rStop
Stop radio charging.

-rLoaded (yes | no)
Set loaded state to yes or no.

Example battery -rStop

cardformat

Purpose Formats a memory card.

Usage cardformat <cardNum> <cardName> <manufName>
<ramStoreName>

Parameters cardNum The card number.

cardName The name to associate with the card.

manufName The manufacturer name to associate with the
card.

ramStoreName The RAM store name to associate with the card.

Using the Console Window
Console Window Commands

134 Palm OS Programming Development Tools Guide

cardinfo

Purpose Displays information about a memory card.

Usage cardinfo <cardNum>

Parameters cardNum The card number about which you want
information. You can use 0 to specify the built-
in RAM.

Example cardinfo 0

Name: PalmCard
Manuf: Palm, Inc
Version: 0001
CreationDate: B1243780
ROM Size: 00118FFC
RAM Size: 00200000
Free Bytes : 0015ACB2
Number of heaps: #3

changerecord

Purpose Replaces a record in a database.

Usage changerecord <accessPtr> <index> <recordText>

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

recordText The new record data.

changeresource

Purpose Replaces a resource in a database.

Usage changeresource <accessPtr> <index> <recordText>

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 135

Parameters accessPtr A pointer to the database.

index The index of the resource in the database.

resourceText The new resource data.

close

Purpose Closes a database.

Usage close <accessPtr>

Parameters accessPtr A pointer to the database.

coldboot

Purpose Initiates a hard reset on the handheld device.

Usage coldboot

Parameters None

Comments Use the coldboot command to perform a hard reset of the
handheld device. A hard reset erases all data on the device,
restoring it to its new condition.

The handheld device requires confirmation of this operation. You
are prompted to press the Up button on the device to confirm that
you want to perform a hard reset, or press any other button to
cancel the operation.

Example coldboot

Using the Console Window
Console Window Commands

136 Palm OS Programming Development Tools Guide

create

Purpose Creates a new database on the handheld device.

Usage create <cardNum> <name> [options]

Parameters cardNum The card number whose databases you want
listed. You almost always use 0 to specify the
built-in RAM.

name The name for the new database on the
handheld device.

options Optional. Specifies information about the new
database:

-t <type>
The 4-character database type identifier.

-c <creator>
The 4-character database creator ID.

-v <version>
The database version number.

-r Specify to indicate that the database is a
resource database.

Comments Use the create command to create a new record or resource database
on the handheld device.

del

Purpose Deletes a database from the handheld device.

Usage del <cardNum> <fileName>

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 137

fileName The name of the database on the handheld
device. Note that you must quote the database
name if it contains spaces.

Comments Use the del command to delete a database from the specified card
on the handheld device.

You can get a list of the databases on the device with the dir
command.

You cannot delete an open database.

Result If the database you want to delete is not found or is currently
opened, you receive an error message.

Example del 0 birds.pdb

Success!!

delrecord

Purpose Deletes a record from a database.

Usage delrecord <accessPtr> <index>

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

Comments Use the delrecord command to delete the record at the specified
index value from the database specified by accessPtr.

delresource

Purpose Deletes a resource from a database.

Usage delresource <accessPtr> <index>

Parameters accessPtr A pointer to the database.

index The index of the resource in the database.

Using the Console Window
Console Window Commands

138 Palm OS Programming Development Tools Guide

Comments Use the delresource command to delete the resource at the
specified index value from the database specified by accessPtr.

detachrecord

Purpose Detaches a record from a database.

Usage detachrecord <accessPtr> <index>

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

Comments Use the detachrecord command to detach the record at the
specified index value from the database specified by accessPtr.

detachresource

Purpose Detaches a resource from a database.

Usage detachresource <accessPtr> <index>

Parameters accessPtr A pointer to the database.

index The index of the resource in the database.

Comments Use the detachresource command to detach the resource at the
specified index value from the database specified by accessPtr.

dir

Purpose Displays a list of the databases on the handheld device.

Usage dir (<cardNum>|<searchOptions>) [<displayOptions>]

Parameters cardNum The card number whose databases you want
listed. You almost always use 0 to specify the
built-in RAM.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 139

searchOptions Optional. Options for listing a specific
database. Specify any combination of the
following flags.

-c <creatorID>
Search for a database by creator ID.

-latest
List only the latest version of each
database.

-t <typeID>
Search for a database by its type.

displayOptions Optional. Options for which information is
displayed in the listing. Specify any
combination of the following flags.

-a Show all information.

-at Show the database attributes.

-d Show the database creation,
modification, and backup dates.

-i Show the database appInfo and sortInfo
field values.

-id Show the database chunk ID

-s Show the database size

-m Show the database modification number.

-n Show the database name.

-r Show the number of records in the
database.

-tc Show the database type ID and creator
ID.

-v Show the database version number.

Comments Use the dir command to display a list of the databases on a specific
card or in the handheld device built-in RAM. You typically use the

Using the Console Window
Console Window Commands

140 Palm OS Programming Development Tools Guide

following command to list all of the databases stored in RAM on the
handheld device:

dir 0

Or use the -a switch to display all of the information for each
database:

dir 0 -a

Example dir 0

name ID total data
--
*System 00D20A44 392.691 Kb 390.361 Kb
*AMX 00D209C4 20.275 Kb 20.123 Kb
*UIAppShell 00D20944 1.327 Kb 1.175 Kb
*PADHTAL Library 00D208E2 7.772 Kb 7.674 Kb
*IrDA Library 00D20876 39.518 Kb 39.402 Kb
 ...
 MailDB 0001817F 1.033 Kb 0.929 Kb
 NetworkDB 0001818B 0.986 Kb 0.722 Kb
 System MIDI Sounds 000181B3 1.066 Kb 0.842 Kb
 DatebookDB 000181FB 0.084 Kb 0.000 Kb

Total: 41

dm

Purpose Displays a range of memory values.

Usage dm <addr> [<count>]

Parameters addr The starting memory address to be displayed.

count The number of bytes to be displayed. If this is
omitted, eight bytes of data are displayed.

Example dm 0000f000

0000F000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
................

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 141

doze

Purpose Instructs the handheld device’s CPU to sleep while maintaining the
peripherals and the clock.

Usage doze [options]

Parameters options You can optionally specify the following flags:

-light
The handheld device will awaken in
response to any interrupt.

Example doze -light

exit

Purpose Exits the debugger.

Usage exit

Parameters None.

export

Purpose Copies a Palm OS database from the handheld device to the desktop
computer.

Usage export <cardNum> <fileName>

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

fileName The name of the database on the handheld
device. Note that you must quote the database
name if it contains spaces.

Using the Console Window
Console Window Commands

142 Palm OS Programming Development Tools Guide

Comments Use the export command to copy a database from the handheld
device to your desktop computer. You can get a list of the databases
on the device with the dir command.

If the database contains resources, it is copied in standard PRC
format; if the database contains records, it is copied in standard PDB
format. Note that these two formats are actually identical.

The exported file is stored in the Device subdirectory of the
directory in which Palm Debugger executable is stored.

The exported file is named fileName, with no added extensions.

Example export 0 “Text to Hex”

Exporting resource 'code'=0....
Exporting resource 'data'=0....
Exporting resource 'pref'=0....
Exporting resource 'rloc'=0....
Exporting resource 'code'=1....
Exporting resource 'tFRM'=1000....
Exporting resource 'tver'=1....
Exporting resource 'tAIB'=1000....
Exporting resource 'Tbmp'=1000....
Exporting resource 'Tbmp'=1001....
Exporting resource 'MBAR'=1000....
Exporting resource 'Talt'=1000....
Exporting resource 'Talt'=1001....
Success!!

feature

Purpose Accesses features.

Usage feature [options]

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 143

Parameters options Optional. You can use the following options:

-all
Displays a list of all known features

–unreg <creator> <num>
Unregisters the specified feature

-get <creator> <num>
Displays the value of a feature

-set <creator> <num> <value>
Sets the value of a feature.

Example feature -all

ROM: creator number value
 'psys' #1 03003000
 'psys' #2 00010000
RAM: creator number value
 'psys' #3 00000001
 'psys' #4 00000001
 'psys' #7 00000001
 'netl' #0 02003000
 'irda' #0 03003000

feature -get psys 3

Value = 00000001

findrecord

Purpose Finds a record by ID.

Usage findrecord <accessPtr> <id>

Parameters accessPtr A pointer to the database.

id The unique record ID.

Using the Console Window
Console Window Commands

144 Palm OS Programming Development Tools Guide

free

Purpose Disposes of a chunk.

Usage free (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <cardNum>
The card number if a local ID is specified
instead of a chunk pointer.

gdb

Purpose Enables or disables gdb debugging

Usage gdb [options]

Parameters options Optional. You can specify the following
options:

-enable
Enables gdb debugging.

-disable
Disables gdb debugging.

getresource

Purpose Retrieves the specified resource.

Usage getresource -t <type> -id <id>

Parameters type The type of resource that you want to retrieve.

id The ID of the resource that you want to retrieve.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 145

gremlin

Purpose Activates a Gremlin until the specified event occurs.

Usage gremlin <num> <until>

Parameters num The number of the Gremlin to activate.

until The event that deactivates the Gremlin.

gremlinoff

Purpose Deactivates the current Gremlin.

Usage gremlinoff

Parameters None

Example gremlinoff

hc

Purpose Compacts a memory heap.

Usage hc <heapId>

Parameters heapId The hexadecimal number of the heap to be
compacted. Heap number 0x0000 is always
the dynamic heap.

Example hc 0002
Heap Compacted

Using the Console Window
Console Window Commands

146 Palm OS Programming Development Tools Guide

hchk

Purpose Checks the integrity of a heap.

Usage hchk <heapId> [options]

Parameters heapId The hexadecimal number of the heap whose
contents are to be checked. Heap number
0x0000 is always the dynamic heap.

options Optional. You can specify the following option:

–c Check the contents of each chunk.

Example hchk 0000
Heap OK

hd

Purpose Displays a hexadecimal dump of the specified heap.

Usage hd <heapId>

Parameters heapId The hexadecimal number of the heap whose
contents are to be displayed. Heap number
0x0000 is always the dynamic heap.

Comments Use the hd command to display a dump of the contents of a specific
heap from the handheld device. You can use the hl command to
display the heap IDs.

Example hd 0

Displaying Heap ID: 0000, mapped to 00001480
 req act
resType/ #resID/
 start handle localID size size lck own flags type
index attr ctg uniqueID name

-00001534 00001494 F0001495 000456 00045E #0 #0 fM
Graffiti Private

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 147

-00001992 00001498 F0001499 000012 00001A #0 #0 fM
DataMgr Protect List (DmProtectEntryPtr*)
-000019AC 00001490 F0001491 00001E 000026 #0 #0 fM Alarm
Table
-000019D2 0000148C F000148D 000038 000040 #0 #0 fM
*00001A12 0000149C F000149D 000396 00039E #2 #1 fM Form
“3:03 pm”
*00001DB0 000014A0 F00014A1 00049A 0004A2 #2 #0 fM
 00002252 -------- F0002252 00002E 00003E #0 #0 FM
 00002290 -------- F0002290 00EC40 00EC50 #0 #0 FM
-00010EE0 -------- F0010EE0 000600 000608 #0 #15 fM
Stack: Console Task

...

000114E8 -------- F00114E8 000FF8 001008 #0 #0 FM
-000124F0 -------- F00124F0 001000 001008 #0 #15 fM
-00017D30 -------- F0017D30 00003C 000044 #0 #15 fM
SysAppInfoPtr: AMX
-00017D74 -------- F0017D74 000008 000010 #0 #15 fM
Feature Manager Globals (FtrGlobalsType)
-00017D84 -------- F0017D84 000024 00002C #0 #15 fM
DmOpenInfoPtr: 'Update 3.0.2'
-00017DB0 -------- F0017DB0 00000E 000016 #0 #15 fM
DmOpenRef: 'Update 3.0.2'
-00017DC6 -------- F0017DC6 0001F4 0001FC #0 #15 fM
Handle Table: 'Ô©Update 3.0.2'
-00017FC2 -------- F0017FC2 000024 00002C #0 #15 fM
DmOpenInfoPtr: 'Ô©Update 3.0.2'
-00017FEE -------- F0017FEE 00000E 000016 #0 #15 fM
DmOpenRef: 'Ô©Update 3.0.2'

Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010C50 bytes)
 Movable Chunks: #51 (005E80 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

Using the Console Window
Console Window Commands

148 Palm OS Programming Development Tools Guide

help

Purpose Displays a list of commands or help for a specific command.

Usage help
help <command>

Parameters command The name of the command for which you want
help displayed.

Example help hchk

Do a Heap Check.
Syntax: hchk <hex heapID> [options...]
 -c : Check contents of each chunk

hf

Purpose Allocates almost all of the free bytes in a heap, reserving the
specified amount of free space.

Usage hf <heapId> <freeBytes>

Parameters heapId The hexadecimal number of the heap. Heap
number 0x0000 is always the dynamic heap.

freeBytes The number of bytes to leave unallocated.

Example hf 0000 20

hi

Purpose Initializes the specified memory heap.

Usage hi <heapId>

Parameters heapId The hexadecimal number of the heap to be
initialized. Heap number 0x0000 is always the
dynamic heap.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 149

Example hi 0006

hl

Purpose Displays a list of memory heaps.

Usage hl <cardNum>

Parameters cardNum The card number on which the heaps are
located. You almost always use 0 to specify the
built-in RAM.

Comments Use the hl command to list the memory heaps in built-in RAM or
on a card.

Example hl 0

 index heapID heapPtr size free maxFree flags
--
 0 0000 00001480 00016B80 00010C50 0000EC48 8000
 1 0001 1001810E 001E7EF2 0014AD6A 00147D3A 8000
 2 0002 10C08212 00118DEE 0000A01C 0000A014 8001

hs

Purpose Scrambles the specified heap.

Usage hs <heapId>

Parameters heapId The hexadecimal number of the heap to be
scrambled. Heap number 0x0000 is always the
dynamic heap.

Comments Scrambling a heap moves its contents around. You can use this to
verify that the program is using handles in the prescribed manner.

Example hs 0002
heap scrambled

Using the Console Window
Console Window Commands

150 Palm OS Programming Development Tools Guide

ht

Purpose Displays summary information for the specified heap.

Usage ht <heapId>

Parameters heapId The hexadecimal number of the heap to be
scrambled. Heap number 0x0000 is always the
dynamic heap.

Comments The ht command displays the summary information that is also
shown at the end of a heap dump generated by the hd command.

Example ht 0000
Displaying Heap ID: 0000, mapped to 00001480
--
Heap Summary:
 flags: 8000
 size: 016B80
 numHandles: #40
 Free Chunks: #14 (010CAA bytes)
 Movable Chunks: #48 (005E26 bytes)
 Non-Movable Chunks: #0 (000000 bytes)

htorture

Purpose Tortures a heap to test its integrity.

Usage htorture <heapId> [options]

Parameters heapId The hexadecimal number of the heap to be
tortured. Heap number 0x0000 is always the
dynamic heap.

options Optional. You can specify a combination of the
following options:

–c Checks the contents of every chunk.

–f <number>
Reports if the heap is filled beyond the
specified percentage. The default is 90
percent.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 151

-l <filename>
Specifies the name of the log file

–m <hexSize>
The maximum chunk size. The default
value is 0x400.

-p <level>
The progress level to display. Specify a
number between 0 (minimum detail)
and 2 (maximum detail). The default
value is 0.

Comments Use the htorture command to torture-test a memory heap. You
can specify a logging file to which the output of the test is sent. You
can also use the -p command to control how progress is displayed.

import

Purpose Copies a Palm OS database from the desktop computer to the
handheld device.

Usage import <cardNum> <fileName>

Parameters cardNum The card number on which the database is to be
installed. You almost always use 0 to specify
the built-in RAM.

fileName The name of the file on the desktop computer.
You can specify an absolute file name path, or a
relative file name path.

The default search path is the Device
subdirectory of the directory in which Palm
Debugger executable is stored.

Comments Use the import command to load a new version of your
application or database onto the handheld device.

Using the Console Window
Console Window Commands

152 Palm OS Programming Development Tools Guide

This command provides a more convenient install operation and
has the same functionality as the installer tool provided with the
HotSync Manager application.

The name of the database on the handheld device is the name stored
in the file, and is not the same as the file name. If a database with a
matching name is already open on the handheld device, an error is
generated. If a database with a matching name is already stored on
the handheld device, that database is deleted and replaced by the
file.

Result If a database with a matching name is currently open on the
handheld device, the dmErrAlreadyExists error code (0x0219)
is generated.

Example import 0 Tex2HexApp.prc

Creating Database on card 0
name: Text to Hex
type appl, creator TxHx

Importing resource 'code'=0....
Importing resource 'data'=0....
Importing resource 'pref'=0....
Importing resource 'rloc'=0....
Importing resource 'code'=1....
Importing resource 'tFRM'=1000....
Importing resource 'tver'=1....
Importing resource 'tAIB'=1000....
Importing resource 'Tbmp'=1000....
Importing resource 'Tbmp'=1001....
Importing resource 'MBAR'=1000....
Importing resource 'Talt'=1000....
Importing resource 'Talt'=1001....
Success!!

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 153

info

Purpose Displays information about a memory chunk.

Usage info (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

–card <cardNum>
The card number if a local ID is specified
instead of a chunk pointer.

kinfo

Purpose Displays a list of all system kernel information.

Usage kinfo [options]

Parameters options Optional. Specify the kernel information that
you want to see displayed. Use a combination
of the following flags:

–all
Display all kernel information.

–task (<id> | all)
Display task information.

–sem (<id> | all)
Display semaphore information.

–tmr (<id> | all)
Display timer information.

Comments Use the kinfo command to display a list of system kernel
information, including tasks, semaphores, event groups, and timers.

Using the Console Window
Console Window Commands

154 Palm OS Programming Development Tools Guide

Example kinfo -all

Task Information:
 taskID tag priority stackPtr status

 000176EA AMX # 0 00017556 Idle: Waiting for Trigger
 000178BE psys # 30 00013364 Waiting on event timer
 0001795A CONS # 10 0001103E Running

Semaphore Information:
 semID tag type initValue curValue nesting ownerID

 000177EE MemM resource #-1 #1 (free) #0 00000000
 00017822 SlkM counting #1 #1 (avail.) #0 00000000
 0001788A SndM counting #1 #1 (avail.) #0 00000000
 00017A5E SerM counting #0 #0 (unavail.) #0 00000000

Timer Information:
 tmrID tag ticksLeft period procPtr

 000177BA psys # 83 # 0 10C6C618

launch

Purpose Launches an application on the handheld device.

Usage launch [-t] [-ns] [-ng] <cardNum> <name> [<cmd>
<cmdStr>

Parameters -t Launches the application as a separate task.

-ns Use the caller’s stack.

-ng Use the caller’s globals environment.

cardNum The card number on which application is
located. You almost always use 0 to specify the
built-in RAM.

name The name of the application to be launched.

cmd Optional. Use to specify a command for the
application.

cmdStr Optional. Use to specify an arguments string
for cmd.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 155

listrecords

Purpose Lists the records in a database.

Usage listrecords <accessPtr>

Parameters accessPtr A pointer to the database.

listresources

Purpose Lists the resources in a database.

Usage listresources <accessPtr>

Parameters accessPtr A pointer to the database.

lock

Purpose Locks a memory chunk.

Usage lock (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

–card <cardNum>
The card number if a local ID is specified
instead of a chunk pointer.

Using the Console Window
Console Window Commands

156 Palm OS Programming Development Tools Guide

log

Purpose Toggles logging of debugger output to a file.

Usage log <fileName>

Parameters fileName The name of the file to which debugger output
is sent.

Comments Use the log command to start or stop logging of debugger output
to a file.

mdebug

Purpose Sets the Memory Manager debug mode, which you can use to track
down memory corruption problems.

Usage mdebug [options]

Parameters options Optional. Specify the kernel information that
you want to see displayed. Use a combination
of the following flags:

–full
Shortcut for full debugging.

–partial
Shortcut for partial debugging.

–off
Shortcut to disable debugging.

-a Check/scramble all heaps each time.

-a- Check only the heap currently in use.

-c Check heap(s) on some memory calls.

-ca Check heap(s) on all memory calls.

-c- Do not check heaps.

-f Check free chunk contents.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 157

-f- Do not check free chunk contents.

-min
Store minimum available free space in
dynamic heap in the global variable
GMemMinDynHeapFree.

-min-
Do not record minimum free space.

-s Scramble heap(s) on some memory calls.

-sa Scramble heap(s) on all memory calls.

-s- Do not scramble heaps.

Comments Use the mdebug command to enable debugging for tracking down
memory corruption problems.

IMPORTANT: The different debug modes enabled by mdebug
can significantly slow down operations on the handheld device.
Full checking is slowest, partial checking is slow, and only
enabling specific options is the fastest.

Example mdebug -full
Current mode = 003A

Every heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked
Minimum dynamic heap free space recording OFF

moverecord

Purpose Moves a record in the database by changing its index.

Usage moverecord <accessPtr> <fromIndex> <toIndex>

Parameters accessPtr A pointer to the database.

fromIndex The original index of the record in the database.

toIndex The new index for the record in the database.

Using the Console Window
Console Window Commands

158 Palm OS Programming Development Tools Guide

new

Purpose Allocates a new chunk in a heap.

Usage new <heapId> <hexChunkSize> [options]

Parameters heapId The hexadecimal number of the heap in which
to allocate a new chunk. Heap number 0x0000
is always the dynamic heap. Note that heapId
is ignored if you specify the -near option.

hexChunkSize The number of bytes in the new chunk,
specified as a hexadecimal number.

options Optional. You can specify a combination of the
following options:

–c Fill the chunk contents.

–lock
Pre-lock the chunk.

–n Make the chunk unmoveable.

–near <ptr>
Allocate the new chunk in the same heap
as the specified pointer. If this option is
specified, the heapId is ignored.

–o <ownerId>
Set the owner of the chunk to the
specified ID value.

open

Purpose Opens a database.

Usage open <cardNum> <name> [options]

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 159

name The name of the database.

options Optional. You can specify the following
options:

-r Open the database for read-only access.

-p Leave the database open.

opened

Purpose Lists all of the currently opened databases.

Usage opened

Parameters None.

Example opened

name resDB cardNum accessP ID openCnt mode
--
*Graffiti ShortCuts yes 0 00017D5C 001FFE7F 1 0007
*System yes 0 00017FEE 00D20A44 1 0005
--
Total: 2 databases opened

performance

Purpose Sets the performance level of the handheld device.

Usage performance [options]

Parameters options You can specify the following options:

–b <baud>
Uses the specified <baud> rate to
calculate the nearest clock frequency
value.

–d <duty>
Set the CPU duty cycle. The <duty>
value specifies the number of CPU cycles
out of every 31 system clock ticks.

Using the Console Window
Console Window Commands

160 Palm OS Programming Development Tools Guide

–f <freq>
Set the system clock frequency to the
specified Hz value; select the nearest
baud multiple as the frequency.

–ff <freq>
Set the system clock frequency to the
specified Hz value; do not pick the
nearest baud multiple.

poweron

Purpose Powers on the handheld device.

Usage poweron

Parameters None.

Example poweron

reset

Purpose Performs a soft reset on the handheld device.

Usage reset

Parameters None.

Comments This command performs the same reset that is performed when you
press the recessed reset button on a Palm Powered handheld device.

Example reset
Resetting system

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 161

resize

Purpose Resizes an existing memory chunk.

Usage resize (<hexChunkPtr> | localID>) <hexNewSize>
[options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

hexNewSize The new size of the chunk, in bytes.

options Optional. You can specify the following
options:

–c Checks and fills the contents of the
resized chunk.

–card <cardNum>
The card number if a local ID is specified
instead of a chunk pointer.

saveimages

Purpose Saves a memory card image.

Usage saveimages

Parameters None.

sb

Purpose Sets the value of a byte in memory.

Usage sb <addr> <value>

Parameters addr The address of the byte.

value The new value of the byte.

Using the Console Window
Console Window Commands

162 Palm OS Programming Development Tools Guide

setinfo

Purpose Sets new information values for a database.

Usage setinfo <cardNum> <dbName> [options]

Parameters cardNum The card number on which the database is
located. You almost always use 0 to specify the
built-in RAM.

dbName The name of the database.

options Options. You can specify a combination of the
following values:

–m <modification>
Sets the modification number for the
database.

–n <name>
Sets the name of the database.

–v <version>
Sets the version number of the database.

setowner

Purpose Sets the owner ID of a memory chunk.

Usage setowner (<hexChunkPtr> | <localID>) <owner>
[options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

hexNewSize The new size of the chunk, in bytes.

owner The new owner ID for the chunk.

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 163

options Optional. You can specify the following
options:

–card <cardNum>
The card number if a local ID is specified
instead of a chunk pointer. Use 0 to
specify the built-in RAM.

setrecordinfo

Purpose Changes information for a record in a database.

Usage setrecordinfo <accessPtr> <index> [options]

Parameters accessPtr A pointer to the database.

index The index of the record in the database.

options Optional. You can specify a combination of the
following options:

–a <hexAttr>
Sets attribute bit settings for the record.

–u <uniqueId>
Sets unique record ID for the record.

setresourceinfo

Purpose Changes information for a resource in a database.

Usage setresourceinfo <accessPtr> <index> [options]

Parameters accessPtr A pointer to the database.

index The index of the resource in the database.

options Optional. You can specify a combination of the
following options:

-t <resType>
Sets resource type for the resource.

-id <resId>
Sets resource ID for the resource.

Using the Console Window
Console Window Commands

164 Palm OS Programming Development Tools Guide

simsync

Purpose Simulates a synchronization operation on a specific database.

Usage simsync <accessPtr>

Parameters accessPtr A pointer to the database.

sleep

Purpose Shuts down all peripherals, the CPU, and the system clock.

Usage sleep

Parameters None.

storeinfo

Purpose Displays information about a memory store.

Usage storeinfo <cardNum>

Parameters cardNum The card number for which you want
information displayed. You almost always use
0 to specify the built-in RAM.

Example storeinfo 0

ROM Store:
 version: 0001
 flags: 0000
 name: ROM Store
 creation date: 00000000
 backup date: 00000000
 heap list offset: 00C08208
 init code offset1: 00C0D652
 init code offset2: 00C1471E
 database dirID: 00D20F7E

Using the Console Window
Console Window Commands

Palm OS Programming Development Tools Guide 165

RAM Store:
 version: 0001
 flags: 0001
 name: RAM Store 0
 creation date: 00000000
 backup date: 00000000
 heap list offset: 00018100
 init code offset1: 00000000
 init code offset2: 00000000
 database dirID: 0001811F

switch

Purpose Switches the application that is used to provide the user interface on
the handheld device.

Usage switch <cardNum> <name> [<cmd> <cmdStr>]

Parameters cardNum The number of the card on which the user
interface application is stored. You almost
always use 0 to specify the built-in RAM.

name The name of the application.

cmd Optional. Use to specify a command for the
application.

cmdStr Optional. Use to specify an arguments string
for cmd.

sysalarmdump

Purpose Displays the system alarm table.

Usage sysalarmdump

Parameters None.

Using the Console Window
Console Command Summary

166 Palm OS Programming Development Tools Guide

Example sysalarmdump

 alarm card
 date time ref seconds dbID # quiet triged noted
--
 7/29/1999 00:00 00000000 B3C54A00 00D1FCF8 4004 false false false
 1/ 1/1904 00:00 00000000 00000000 00000000 0000 false false true

unlock

Purpose Unlocks a memory chunk.

Usage unlock (<hexChunkPtr> | localID>) [options]

Parameters hexChunkPtr or localID
A pointer to a chunk in memory, or the ID of a
chunk on the specified card number.

options Optional. You can specify the following
options:

-card <cardNum>
The card number if a local ID is specified
instead of a chunk pointer.

Console Command Summary

Card Information Commands
cardformat Formats a memory card.

cardinfo Retrieves information about a memory card.

storeinfo Retrieves information about a memory store.

Using the Console Window
Console Command Summary

Palm OS Programming Development Tools Guide 167

Chunk Utility Commands

Database Utility Commands

Debugging Utility Commands

free Disposes of a heap chunk.

info Displays information on a heap chunk.

lock Locks a heap chunk.

new Allocates a new chunk in a heap.

resize Resizes an existing heap chunk.

setowner Sets the owner of a heap chunk.

unlock Unlocks a heap chunk.

close Closes a database.

create Creates a new database.

del Deletes a database.

dir Lists the databases.

export Exports a database to the desktop computer.

import Imports a database from the desktop computer.

open Opens a database.

opened Lists all currently opened databases.

setinfo Sets database information, such as its name,
version number, and modification number.

dm Displays memory.

gdb Enables or disables Gdb debugging.

mdebug Sets the Memory Manager debug mode.

sb Sets the value of a byte.

Using the Console Window
Console Command Summary

168 Palm OS Programming Development Tools Guide

Gremlin Commands

Heap Utility Commands

Host Control Commands

Miscellaneous Utility Commands

gremlin Activates the specified gremlin until a specified
event occurs.

gremlinoff Deactivates the current gremlin.

hc Compacts a memory heap.

hchk Checks a heap.

hd Displays a dump of a memory heap.

hf Allocates all free space in a memory heap,
minus a specified number of bytes.

hi Initializes a memory heap.

hl Lists all of the memory heaps on the specified
memory card.

hs Scrambles a heap.

ht Performs a heap total.

htorture Torture-tests a heap.

help Provides help on the console commands.

log Starts or stops logging to a file.

saveimages Saves an image of a memory card to file.

simsync Simulates a synchronization operation on a
database.

sysalarmdump Displays the alarm table.

Using the Console Window
Console Command Summary

Palm OS Programming Development Tools Guide 169

Record Utility Commands

Resource Utility Commands

addrecord Adds a record to a database.

attachrecord Attaches a record to a database.

changerecord Replaces a record in a database.

delrecord Deletes a record from a database.

detachrecord Detaches a record from a database.

findrecord Finds a record by its unique ID.

listrecords Lists all of the records in a database.

moverecord Changes the index of a record.

setrecordinfo Sets record information, such as its ID and
attributes.

addresource Adds a resource to a database.

attachresource Attaches a resource to a database.

changeresource Replaces a resource in a database.

delresource Deletes a resource from a database.

detachresource Detaches a resource from a database.

getresource Retrieves a resource from a database.

listresources Lists all resources in a database.

setresourceinfo Sets resource information, such as its ID and
resource type.

Using the Console Window
Console Command Summary

170 Palm OS Programming Development Tools Guide

System Commands
battery Battery utility command for starting or

stopping radio charging, and for setting the
loaded status.

coldboot Boots the handheld device.

doze Puts the CPU to sleep while keeping the
peripherals and clock running on the handheld
device.

exit Exits the console.

feature Displays, retrieves, registers, or unregisters
features.

kinfo Displays kernel information.

launch Launches an application.

performance Sets performance levels, such as the system
clock frequency and CPU duty cycle.

poweron Powers on the handheld device.

reset Resets the memory system and formats both
cards.

sleep Shuts down all peripherals, the CPU, and the
system clock.

switch Switches the current user interface application.

Palm OS Programming Development Tools Guide 171

5
Using Palm Reporter
This chapter describes Palm Reporter, which you can use to do trace
analysis of your Palm OS® applications. The following topics are
covered in this chapter:

• “About Palm Reporter” - An introduction to Palm Reporter
concepts

• “Downloading Palm Reporter” on page 172 - How to
download and install the Palm Reporter package

• “Adding Trace Calls to Your Application” on page 173 - How
to add Host Control trace calls to your application

• “Displaying Trace Information in Palm Reporter” on
page 175 - How to open a Palm Reporter session to view the
trace information

• “Troubleshooting Palm Reporter” on page 179 - How to
make sure Palm Reporter is running correctly

About Palm Reporter
Palm Reporter is a trace utility that can be used with Palm OS
Emulator. As an application runs on Palm OS Emulator, it can send
information in real time to Reporter. This information can help
pinpoint problems that might be hard to identify when executing
code step-by-step or when specifying breakpoints. To view the
realtime traces, simply run Reporter at the same time as you run
your application on Palm OS Emulator.

Palm Reporter Features
Palm Reporter has a number of features that make it useful:

• High throughput of trace output, allowing for realtime traces

• Trace output filtering, searching, saving, printing, and
copying

• Display of Trace output through a TCP/IP connection

Using Palm Reporter
Downloading Palm Reporter

172 Palm OS Programming Development Tools Guide

Downloading Palm Reporter
The most recent released version of Palm Reporter is posted on the
internet in the Palm™ developer zone:

http://www.palmos.com/developers

Follow the links from the developer zone main page to the Palm OS
Emulator page to retrieve the released version of Palm Reporter.

Palm Reporter Package Files
The Palm Reporter package includes the following files:

Installing Palm Reporter
Palm Reporter requires Palm OS Emulator. Place the PalmTrace
library (PalmTrace.dll or PalmTraceLib) in the same folder as
the Palm OS Emulator executable. Emulator will not be able to send
trace information to Reporter if it cannot find and load the
PalmTrace library.

The Palm Reporter executable can be located in any folder on your
system; it does not need to be in the same folder as Palm OS
Emulator.

Table 5.1 Files Included in the Palm Reporter Package

File Description

Windows: Reporter.exe
Macintosh: Reporter

Main Palm Reporter program
file

Windows: PalmTrace.dll
Macintosh: PalmTraceLib

Palm OS Emulator add-on that
relays traces to Palm Reporter

TraceTest.prc Sample application containing
HostTrace API calls

Documentation (folder) Palm Reporter documentation,
including:
• Reporter
guide.html

• Reporter
protocol.html

http://www.palm.com/developers

Using Palm Reporter
Adding Trace Calls to Your Application

Palm OS Programming Development Tools Guide 173

Adding Trace Calls to Your Application
Traces are generated by system calls that are recognized by Palm OS
Emulator but ignored by actual handheld devices. These system
calls are listed in hostcontrol.h, which is part of both the Palm
OS SDK and the Palm OS Emulator package. For more information
about the Host Control API, see the book Using Palm OS Emulator.

The Host Control system calls pertinent to tracing are listed in the
following table:

All HostTraceOutput functions take an error class identifier as
their first parameter. This parameter allows filtering of traces
according to their origin. Recognized error classes are listed in
SystemMgr.h. For example, applications should specify the error
class appErrorClass.

System Call Format Function Description

void HostTraceInit(void) Initiate a connection to Reporter

void HostTraceOutputT(UInt16
mod, const char* fmt, …)

Output a string to Reporter (printf
format)

void HostTraceOutputTL(UInt16
mod, const char* fmt, …)

Output a string to Reporter (printf
format) with an additional line break

void HostTraceOutputB(UInt16
mod, const char* buff, UInt32
len)

Send binary data to Reporter

void HostTraceOutputVT(UInt16
mod, const char* fmt, va_list
vargs)

Output a string to Reporter (vprintf
format)

void HostTraceOutputVTL(UInt16
mod, const char* fmt, va_list
vargs)

Output a string to Reporter (vprintf
format) with an additional line break

void HostTraceClose(void) Close the connection to Reporter

Using Palm Reporter
Adding Trace Calls to Your Application

174 Palm OS Programming Development Tools Guide

Specifying Trace Strings
Trace strings use the following format:

% <flags> <width> <type>

<flags>

- Left-justify display (Default is right
justify)

+ Always display the sign character
(Default is to display the sign character
for negative values only)

space Display a space (when a value is
positive) rather than displaying a “+”
sign

Alternate form specifier

<width> Must be a positive number

<type>

% Display a “%” character

s Display a null-terminated string

c Display a character

ld) Display an Int32 value

lu Display a UInt32 value

lX or lx
Display an Int32 or UInt32 value in
hexadecimal

hd Display an Int16 value

hu Display a UInt16 value

hX or hx
Display an Int16 or UInt16 value in
hexadecimal

NOTE: The following types are not supported for <type>: o, e,
E, f, F, g, G, p, l, n, d, i, u, X, or x.

Using Palm Reporter
Displaying Trace Information in Palm Reporter

Palm OS Programming Development Tools Guide 175

Trace Functions in a Code Sample
void function(void)
{
unsigned char theBuffer[256];
unsigned long theUInt32 = 0xFEDC1234;
unsigned short theUInt16 = 0xFE12;
int i;

HostTraceInit();

HostTraceOutputTL(appErrorClass, “This is an Int32:”);
HostTraceOutputTL(appErrorClass, “ unsigned (lu) [4275835444]=[%lu]”,
theUInt32);
HostTraceOutputTL(appErrorClass, “ signed (ld) [-19131852]=[%ld]”, theUInt32);
HostTraceOutputTL(appErrorClass, “ hexa (lx) [fedc1234]=[%lx]”, theUInt32);

HostTraceOutputTL(appErrorClass, “This is an Int16:”);
HostTraceOutputTL(appErrorClass, “ unsigned (hu) [65042]=[%hu]”, theUInt16);
HostTraceOutputTL(appErrorClass, “ signed (hd) [-494]=[%hd]”, theUInt16);
HostTraceOutputTL(appErrorClass, “ hexa (hX) [FE12]=[%hX]”, theUInt16);

HostTraceOutputTL(appErrorClass, “This is a string (s) [Hello world]=[%s]”,
“Hello world”);
HostTraceOutputTL(appErrorClass, “This is a char (c) [A]=[%c]”, 'A');

HostTraceOutputTL(appErrorClass, “This is a buffer:”);

for (i = 0 ; i < 256 ; i++) theBuffer[i] = (unsigned char) i;

HostTraceOutputB(appErrorClass, theBuffer, 256);

HostTraceClose();
}

Displaying Trace Information in Palm Reporter
To view trace information in Palm Reporter, you need to do the
following:

• Add trace calls to your application and build your
application

• Start a Palm Reporter session

Using Palm Reporter
Displaying Trace Information in Palm Reporter

176 Palm OS Programming Development Tools Guide

• Start a Palm OS Emulator session

– Set the Emulator “Tracing Options” to display output to
“Palm Reporter“

– Install your trace-enabled application in the Emulator
session

– Run your trace-enabled application in the Emulator
session

Starting a Palm Reporter Session
To start a Palm Reporter session, run the Reporter.exe file. After
starting Palm Reporter, you should see an empty window. This
window will serve as a container for other windows which display
the trace information. A new trace window is created for each
HostTraceInit to HostTraceClose sequence in your trace-
enabled application.

Each HostTraceOutput call will send information into the current
trace window. The HostTraceOutput call will fail if there is no
active trace window, which can happen if Reporter is not running
when the HostTraceInit function is called.

Also, a reset in Emulator will close any pending connection. That is,
Emulator will call the HostTraceClose function for your
application if you used HostTraceInit to open a trace
connection.

Figure 5.1 shows a Palm Reporter session window.

Using Palm Reporter
Displaying Trace Information in Palm Reporter

Palm OS Programming Development Tools Guide 177

Figure 5.1 Palm Reporter Session Window

Filtering Information in a Palm Reporter
Session
You can control the type of trace information Palm Reporter
displays. You control this information by setting filters. Filters can be
set either globally, by using the Global filters... menu, or for the
current window, by using the Active view filters... menu. By
enabling or disabling the filters, you can choose to view traces sent
by corresponding modules in your application. Global filter settings
are saved when you exit the Palm Reporter session.

Using Palm Reporter
Displaying Trace Information in Palm Reporter

178 Palm OS Programming Development Tools Guide

Using the Palm Reporter Toolbar
Palm Reporter provides a toolbar with the following functions:

Toolbar
Icon

Function

Save the contents of the Reporter window
to a file

Print the contents of the Reporter window

Select all of the text in the Reporter
window

Copy the selected text into the system
clipboard

Clear the contents of the Reporter
window

Draw a horizontal line across the
Reporter window

Search the Reporter window for specified
text

Search the Reporter window for the next
occurrence of specified text

Search the Reporter window for the
previous occurrence of specified text

Set “on top” mode to keep the Reporter
window always visible on the screen

Set filters for the current window only

Set font for the current window only

Set filters for all new windows

Set font for all new windows

Using Palm Reporter
Troubleshooting Palm Reporter

Palm OS Programming Development Tools Guide 179

Troubleshooting Palm Reporter
Table 5.2 How to Solve Possible Palm Reporter Problems

Symptom Solution

You are unable to set the Emulator
“Tracing Options” to display output to
“Palm Reporter”.

Make sure that the PalmTrace library is
in the same folder as the Palm OS
Emulator executable.

The PalmTrace library
(PalmTrace.dll or PalmTraceLib
file) doesn’t appear in the folder where
you decompressed the Reporter’s archive.

Check to see if your system is configured
to “Hide system files.”

Nothing appears in the Palm Reporter
session window.

Make sure that:

• The PalmTrace library
(PalmTrace.dll or
PalmTraceLib file) is in the same
folder as the Palm OS Emulator
executable.

• Your application code is calling
HostTraceInit.

• You are using Palm OS Emulator
version 3.0a4 or later.

• You have set the Emulator
“Tracing Options” to display
output to “Palm Reporter”.

• Your filters are set correctly, and
traces are emitted with the right
modules.

You have checked everything in this
table, and Reporter still isn’t displaying
trace information.

Send a note describing your problem to
reporter@palm.com.

Using Palm Reporter
Troubleshooting Palm Reporter

180 Palm OS Programming Development Tools Guide

Table 5.3 Palm Reporter Error Message

Error Message Problem Possible Solution

An error occurred while
trying to listen for traces.

Default reception port is
already in use.

Check that no other
instance of the Reporter is
running.

An error occurred while
initializing ObjectSet.

Framework initialization
failed.

Send a note describing
your problem to
reporter@palm.com.

An error occurred while
ObjectSet was initializing
TCP/IP.

TCP/IP related failure. Check that TCP/IP
networking is correctly set
up.

Cannot load filters
description.

The Reporter executable
file was altered.

Send a note describing
your problem to
reporter@palm.com.

Unable to start a reader
thread.

Reporter could not create
receiver thread.

Free up system resources.

Unable to start a format
thread.

Reporter could not create
displayer thread.

Free up system resources.

Palm OS Programming Development Tools Guide 181

6
Using the Overlay
Tools
This chapter describes how the PRC-to-Overlay tools can be used to
produce a localized version of an application. The following topics
are covered in this chapter:

• “Using Overlays to Localize Resources”- An overview of
using overlay databases to localize application resources.

• “About the Overlay Tools” on page 183 - An introduction to
the PRC-to-Overlay and Patch Overlay tools.

• “Using the PRC-to-Overlay Function” on page 183 describes
how to create overlay resource databases for localized data.

• “Using the Patch Overlay Function” on page 186 describes
how to use multiple overlay resource databases with a single
bases application database.

• “PRC2OVL Options Summary” on page 187 lists the
command line options used with PRC2OVL.

• “Using PRC2OVL on the Macintosh” on page 189 contains
special instructions for using PRC2OVL on a Macintosh
system.

Using Overlays to Localize Resources
Palm OS® 3.5 added support for localizing applications through
overlay databases. Each overlay database is a separate resource
database that provides an appropriately localized set of resources
for a single base database (a PRC file) and a single target locale
(language and country).

Support for overlay databases is provided by Overlay Manager. To
use Overlay Manager, create a base application that has your base
resources (usually English) for your user interface and a separate
overlay database that has the substitutions you want to make for

Using the Overlay Tools
Using Overlays to Localize Resources

182 Palm OS Programming Development Tools Guide

each locale (French, German, Japanese, etc.). When an application
runs on a localized version of Palm OS, Overlay Manager
automatically substitutes localized resources from the appropriate
overlay database at runtime. Alternatively, you can use Data
Manager routine DMOpenDBWithLocale() to open a base
database with an arbitrary overlay.

For more information about Overlay Manager and localizing your
applications, see Palm OS Programmer’s Companion.

Overlay Database Names
Each overlay database name contains a locale suffix. A locale consists
of a language indicator and a country code:

• The first two letters indicate the language and must be lower
case.

• The second two letters indicate the country and must be
upper case.

For example, the database name Address Book_enUS.PRC
indicates that this is an overlay for the language “English” and the
country “United States.”

Overlay Specification Resources
Overlay specification resources establish a link between the base
and the overlay databases. They bind resources together and are
important when you have multiple version of the same database
(for example, version 1 and version 2 of an application). Overlay
specifications are required for overlay databases, but optional for
the base database.

Overlay specification resources contain the following information:

• Type information (‘ovly’ for overlay databases)

• ID = 1000

• Target locale (language and country)

• Information about the base database (type, creator,
checksum, etc.)

• Information about each overlaid resource. This content
specifies exactly which resources are overlaid. Normally, this

Using the Overlay Tools
About the Overlay Tools

Palm OS Programming Development Tools Guide 183

content consists of replacements for resources in the base, but
it can also specify additional resources that are not in the
base.

About the Overlay Tools
The overlay tools allow you to produce an overlay database that can
be superimposed on top of another so that any requests for the
underlying base database first go through the overlay database.
This allows localization to be performed by placing the localized
(for example, German) data in an overlay for a particular locale (for
example, Germany).

You can edit and distribute the overlay separately from the
underlying database. Because the overlay only needs to contain
localized data, it does not need to include your application code or
other large resources.

Using the PRC-to-Overlay Function
The PRC-to-Overlay function takes a normal resource database
(usually an application) as input and produces an overlay. You can
also give the tool an overlay as input to create a new overlay for a
different locale.

How the PRC-to-Overlay Function Works
The PRC-to-Overlay function takes a single file as input, passes the
file through a set of filters to decide which particular resources
(components of the database) are localizable and should be put in
the overlay. Then, given a particular locale, the tool generates an
overlay file.

Choosing a Locale
A locale consists of a language indicator and a country code:

• The first two letters indicate the language and must be lower
case.

Using the Overlay Tools
Using the PRC-to-Overlay Function

184 Palm OS Programming Development Tools Guide

• The second two letters indicate the country and must be
upper case.

To list the available language and country codes, use the following
command:

prc2ovl -showlocales

For example, the following command creates an English language
overlay for the country United States (using the default filter set):

PRC2OVL NewApp.prc -locale enUS -o
NewApp_enUS.prc

where:

NewApp.prc Indicates the input file name “NewApp.prc“

-locale enUS Indicates the language code is “en” for English
and the country code is “US” for United States

-o NewApp_enUS.prc
Specifies the output file name
“NewApp_enUS.prc“

Modifying the Filter Set
A filter set indicates which particular resources (components of the
database) are localizable and which resources should be put in the
overlay PRC.

To modify the filter set, use the -a, -n, -i, and -e switches:

-a indicates that all resources are to be localized.

-n indicates that no resources are to be localized.

-i includes a particular set of resources (in the list of
localized resources).

-e excludes a particular set.

Each switch operates in the order in which it appears on the
command line. The last switch that matches is the one that is
operated on. For example, the filter set:

-n -i tFRM 1000

Using the Overlay Tools
Using the PRC-to-Overlay Function

Palm OS Programming Development Tools Guide 185

produces an overlay that only contains the single ‘tFRM 1000’
resource (if it is present in the input), but the filter set:

-a -e tFRM 1000

localizes everything but the ‘tFRM 1000’resource.

Default Filters

Recreate the default filters with the following set of parameters:

-a -e CODE -e DATA -e code -e data

-e boot -e extn -e pref

Restricting Resource Matches

You can restrict matches by ID number. For example, if you only
want to localize resource type ‘BAZZ’ with ID 567, specify the
filter set:

-i BAZZ 567

You can also supply ranges in your filter set, as shown in the
following example:

-i BAZZ 567-599

Note: To see which resources are selected in the output, use the -v
(for verbose) switch.

PRC2OVL Example
This example shows the files that are included as part of an
application that needs to be localized.

The NewApp.prc file contains the application named NewApp
which is written in English. The PRC file contains the following
resources:

• Resource 0: ‘CODE’ 0, application code

• Resource 1: ‘CODE’ 1, more application code

• Resource 2: ‘tFRM’ 1000, application form

• Resource 3: ‘tSTR’ 1000, UI strings

Using the Overlay Tools
Using the Patch Overlay Function

186 Palm OS Programming Development Tools Guide

Using the following command:

PRC2OVL NewApp.prc -locale deDE -o
NewApp_deDE.prc

Creates a German overlay, NewApp_deDE.prc,which is a file
containing the following resources:

• Resource 0: ‘tFRM’ 1000, application form

• Resource 1: ‘tSTR’ 1000, UI strings

Using the Patch Overlay Function
The Patch Overlay function takes two input files, a base PRC and an
overlay PRC, and outputs a new overlay PRC that has been modified
so it will work with the given base PRC. This is accomplished by
copying the appropriate data over the overlay resource in the
overlay file, synthesizing necessary data if the base PRC was
stripped.

You specify the Patch Overlay function with the -p switch. For
example,

PRC2OVL OrigGermanOvl.prc -c

-p EnglishBase.prc -o FixedGermanOvl.prc

where:

OrigGermanOvl.prc
Indicates the input overlay PRC filename.

-c Indicates whether to generate a new checksum
for the output overlay PRC.

If you omit the “-c” parameter, then PRC2OVL
will copy appropriate data over the overlay
resource in the overlay file, synthesizing
necessary data if the base PRC was stripped,
and will generate a new checksum for the
output overlay PRC.

Using the Overlay Tools
PRC2OVL Options Summary

Palm OS Programming Development Tools Guide 187

If you include the “-c” parameter, then
PRC2OVL will simply generates a new
checksum for the output overlay PRC, without
copying data over the overlay resource in the
overlay PRC.

-p EnglishBase.prc
Indicates this is a Patch Overlay function and
EnglishBase.prc is the input base PRC
filename.

-o FixedGermanOvl.prc
Indicates the output overlay PRC filename.

Example

This example shows how you could build two language versions as
separate projects, and generate two language overlays that would
work for a single base:

1. Build your English language project: EnglishApp.prc.
2. Create a second project, where you duplicate the code from

the first project, but change the resources for your desired
localization. For example: GermanApp.prc.

3. Use PRC-to-Overlay to generate an English overlay:
EnglishOvl.prc.

4. Use PRC-to-Overlay to generate a German overlay:
GermanOvl.prc.

5. Use the Patch Overlay function to incorporate the checksums
and overlay resource descriptions from the English
application into the GermanOvl.prc, calling it
FixedGermanOvl.prc.

As a result, you would have an EnglishBase.prc that would
work with two overlay PRCs: EnglishOvl.prc and
FixedGermanOvl.prc.

PRC2OVL Options Summary
The following tables list the PRC2OVL command line options. These
options can be specified in any order.

Using the Overlay Tools
PRC2OVL Options Summary

188 Palm OS Programming Development Tools Guide

Table 6.1 PRC2OVL Options for the PRC-to-Overlay
Function

Option Description

-h Display help information.

-o filename Specify the name of output file.

-showlocales List the available language and country codes.

-locale llCC Specify a locale code, where ll indicates the language and
CC indicates the country code.

-a Specify a filter set that localizes all resources.

-n Specify a filter set that localizes no resources.

-i resourceID(s) Specify a filter set that includes a particular set of
resources, where resourceID(s) can be a single resource ID
number (for example, 567) or a range of resource ID
numbers (for example, 567-599).

-e resourceID(s) Specify a filter set that excludes a particular set of
resources, where resourceID(s) can be a single resource ID
number (for example, 567) or a range of resource ID
numbers (for example, 567-599).

-v or -V Print status information to the screen.

Table 6.2 PRC2OVL Options for the Patch Overlay Function

Option Description

-h Display help information.

-c Generate a new checksum for the output
overlay PRC, without copying data over
the overlay resource in the overlay PRC.

-p filename Specify the name of the input base PRC
file.

-o filename Specify the name of output overlay PRC
file.

Using the Overlay Tools
Using PRC2OVL on the Macintosh

Palm OS Programming Development Tools Guide 189

Getting Help
You can get help when you:

• Run PRC2OVL (or MPWPRC2OVL) without arguments.

• Enter invalid arguments.

• Use -h on the command line.

Help lists the default resource selection filters.

Using PRC2OVL on the Macintosh
This section describes how to use PRC2OVL on a Macintosh
graphical user interface (GUI).

Opening a PRC file
You can use the Mac GUI to create an overlay for a PRC file;
typically the PRC file contains an application or a preference panel.
Open the PRC file, then pick a target locale (which is the same as the
-locale switch). The application displays the entire list of
resources in the file, using the same default selection criteria, if
necessary, to provide a suggested set of resources to localize. You
can edit these by clicking on the checkbox by each item in the list.
Then you can build an output file by clicking on the Build button.

Selecting Resources
The Mac GUI tool lets you select the resources you want to localize
from a list rather than specifying resources with filters on the
command line. By default, the tool assumes that all resources are
overlaid except those of types ‘CODE’, ‘DATA’, ‘code’, ‘data’,
‘boot’, ‘extn’, and ‘pref’. (You can select other resources via
the filter options you use in the command-line tool.)

Palm OS Programming Development Tools Guide 191

A
Resource Tools
There are two tools provided with the Metrowerks CodeWarrior
environment that you can use to work with resources:

• Use the Rez tool to compile a textual description of the
resources for your application into a resource file.

• Use the DeRez tool to decompile a resource file into a text
file.

Both of these tools are standard Apple Computer tools for working
with Macintosh OS application resources. Documentation for both
the Rez and DeRez programs is found in the Apple book Building
and Managing Programs in MPW, 2nd Edition. This book is available
online at the following URL:

http://developer.apple.com/tools/mpw-tools/books.html

http://developer.apple.com/tools/mpw-tools/books.html

Palm OS Programming Development Tools Guide 193

B
Simple Data Types
Table B.1 describes the simple data types, which have been renamed
in the newest release of the Palm OS® software.

Table B.1 Simple Data Types

Old data type name New data type name Description

Byte UInt8 unsigned 8-bit value

UChar UInt8 unsigned 8-bit value

SByte Int8 signed 8-bit value

Int Int16 signed 16-bit value

SWord Int16 signed 16-bit value

Short Int16 signed 16-bit value

UShort UInt16 unsigned 16-bit value

UInt UInt16 unsigned 16-bit value

Word UInt16 unsigned 16-bit value

Long Int32 signed 32-bit value

SDWord Int32 signed 32-bit value

ULong UInt32 unsigned 32-bit value

DWord UInt32 unsigned 32-bit value

Handle MemHandle a handle to a memory chunk

VoidHand MemHandle a handle to a memory chunk

Ptr MemPtr a pointer to memory

VoidPtr MemPtr a pointer to memory

Palm OS Programming Development Tools Guide 195

Index

Symbols
> command 54

A
adding trace calls 173
addrecord command 131
addresource command 131
alias command 55
aliases 31
aliases command 55
application

localizing 181
application locale 183
arithmetic operators 19
assigning values to registers 23
assignment operator 20
atb command 55
atc command 56
atd command 56
atr command 56
att command 57
attachrecord command 132
attachresource command 132

B
basic debugging tasks 22
battery command 133
baud rate

changing in Palm Debugger 47
baud rate, changing 47
BigROM 6
bitwise operators 20
bootstrap command 58
br command 58
brd command 59
break command, debugger 5
breakpoint constants 95
BreakpointType structure 98

C
cardformat command 133
cardinfo command 59, 134

cast operator 19
changerecord command 134
changeresource command 134
cl command 60
close command 135
coldboot command 135
command constants 95
command packets

Continue 99
Find 100
Get Breakpoints 101
Get Routine Name 102
Get Trap Breaks 104
Get Trap Conditionals 105
Message 106
Read Memory 107
Read Registers 108
RPC 109
Set Breakpoints 110
Set Trap Breaks 111
Set Trap Conditionals 112
State 113
Toggle Debugger Breaks 115
Write Memory 116
Write Registers 117

command request packets 92
command response packets 92
command syntax 12
commands

debugger protocol 99
connecting to handheld device 4
console commands 126, 130

addrecord 131
addresource 131
attachrecord 132
attachresource 132
battery 133
cardformat 133
cardinfo 134
changerecord 134
changeresource 134
close 135
coldboot 135
create 136
del 136
delrecord 137

196 Palm OS Programming Development Tools Guide

delresource 137
detachrecord 138
detachresource 138
dir 138
dm 140
doze 141
exit 141
export 141
feature 142
findrecord 143
free 144
gdb 144
getresource 144
gremlin 145
gremlinoff 145
hc 145
hchk 146
hd 146
help 148
hf 148
hi 148
hl 149
hs 149
ht 150
htorture 150
import 151
info 153
kinfo 153
launch 154
listrecords 155
listresources 155
lock 155
log 156
mdebug 156
moverecord 157
new 158
open 158
opened 159
performance 159
poweron 160
reset 160
resize 161
saveimages 161
sb 161
setinfo 162
setowner 162
setownerinfo 163

setresourceinfo 163
simsync 164
sleep 164
storeinfo 164
switch 165
sysalarmdump 165
unlock 166

console stub 122
console window 3

activating input 122
using 125

constants
breakpoint 95
debugger protocol command 95
debugging 89
packet 94
state 95

Continue 99
converting PRC to overlay 181
country code 183
CPU registers window 3
create command 136

D
database commands 28
db command 60
DbgBreak 5
debugger protocol

breakpoint constants 95
command constants 95
command request packets 92
command response packets 92
commands 99
Continue command 99
Find command 100
Get Breakpoints command 101
Get Routine Name command 102
Get Trap Breaks command 104
Get Trap Conditionals command 105
host and target 91
Message command 106
message packets 92
packet communications 92, 94
packet constants 94
packet structure 92
packet summary 118

Palm OS Programming Development Tools Guide 197

packet types 92
Read Memory command 107
Read Registers command 108
RPC command 109
Set Breakpoints command 110
Set Trap Breaks command 111
Set Trap Conditional command 112
State command 113
state constants 95
Toggle Debugger Breaks command 115
Write Memory command 116
Write Registers command 117

debugger protocol API 91
debugger stub 4
debugging commands

> 54
alias 55
aliases 31, 55
atb 55
atc 56
atd 56
atr 56
att 57
automatic loading of definitions 31
binary numbers in 18
bootstrap 58
br 58
brd 59
cardinfo 59
character constants in 17
cl 60
db 60
decimal numbers in 18
dir 60
dl 62
dm 63
dump 63
dw 64
dx 64
expression operators 19
fb 64
fill 65
fl 65
flow control 25
ft 66
fw 66
g 67

gt 67
hchk 68
hd 68
help 70
hexadecimal numbers in 18
hl 70
ht 71
il 71
info 72
keywords 73
load 73
opened 74
penv 74
reg 75
reset 75
run 76
s 76
save 76
sb 77
sc 77
sc6 78
sc7 78
script files 31
shortcut characters in 22
sizeof 79
sl 79
ss 80
storeinfo 80
structure templates 29
summary 85
sw 81
t 81
templates 82
typedef 82
typeend 83
using expressions in 17
var 83
variables 84
wh 84

debugging conduits
shortcut numbers 6, 123

debugging constants 89
debugging host 91
debugging memory corruption problems 41
debugging target 91
debugging variables 88

198 Palm OS Programming Development Tools Guide

debugging window 3
activating 4
using 15

debugging window commands 53
defining structure templates 30
del command 136
delrecord command 137
delresource command 137
dereference operator 19
detachrecord command 138
detachresource command 138
dir command 60, 138
disassembling memory 24
displaying and disassembling memory 24
displaying memory 24
displaying registers and memory 23
displaying trace information 176
dl command 62
dm command 63, 140
downloading

reporter 172
doze command 141
dump command 63
dw command 64
dx command 64

E
emulator

using reporter 176
entering commands in Palm Debugger 9
error messages

in Palm Debugger 36
exit command 141
export command 141
expression language for Palm Debugger 53
expressions in Palm Debugger 17

F
fb command 64
feature command 142
fill command 65
filter set

localization 184

filtering trace information 177
Find 100
finding code in the debugger 38
finding memory corruption problems 41
finding specific code 38
findrecord command 143
fixing reporter problems 179
fl command 65
flow control commands 25
free command 144
ft command 66
fw command 66

G
g command 67
gdb command 144
GDbgWasEntered 5
Get Breakpoints 101
Get Routine Name 102
Get Trap Breaks 104
Get Trap Conditionals 105
getresource command 144
gremlin command 145
gremlinoff command 145
gt command 67

H
handheld device

connecting with Palm Debugger 4
hc command 145
hchk command 68, 146
hd command 68, 146
heap and database commands 28
heap commands 28
help command 70, 148
hf command 148
hi command 148
hl command 70, 149
host control

adding trace calls 173
using reporter 173

hs command 149
ht command 71, 150

Palm OS Programming Development Tools Guide 199

htorture command 150

I
il command 71
import command 151
importing a database 126
info command 72, 153

K
keywords command 73
kinfo command 153

L
language indication 183
launch command 154
listrecords command 155
listresources command 155
load command 73
loading debugger definitions 31
local variables

displaying in Palm Debugger 44
localization 181
lock command 155
log command 156

M
mdebug command 156
memory corruption 41
menus in Palm Debugger 10
Message 106
message packets 92
moverecord command 157
MPWPRC2OVL 189

N
new command 158

O
open command 158
opened command 74, 159
operators in debugging commands 19
overlay tool

about 183
choosing a locale 183
filter set 184
help 189
Macintosh use 189
option summary 187
patch overlay 186
PRC2OVL 184, 186
PRC-to-overlay 183

overlay tools 181

P
packet communications 94
packet constants 94
packet types 92
Palm Debugger 38, 47

> command 54
about 2
addrecord command 131
addresource command 131
address values 14
alias command 55
aliases 31
aliases command 55
and memory corruption problems 41
arithmetic operators 19
assigning values to registers 23
assignment operator 20
atb command 55
atc command 56
atd command 56
atr command 56
att command 57
attachrecord command 132
attachresource command 132
basic tasks 22
battery command 133
bitwise operators 20
bootstrap command 58
br command 58
brd command 59
cardformat command 133
cardinfo command 59, 134
cast operator 19
changerecord command 134
changeresource command 134

200 Palm OS Programming Development Tools Guide

cl command 60
close command 135
coldboot command 135
command options 13, 52, 129
command syntax 12, 128
connecting to handheld device 4
console commands 130
console window 3, 125
CPU registers window 3
create command 136
db command 60
debugger environment variables 88
debugging command summary 85
debugging window 3
debugging window commands 53
del command 136
delrecord command 137
delresource command 137
dereference operator 19
detachrecord command 138
detachresource command 138
dir command 60, 138
displaying local variables 44
displaying registers and memory 23
dl command 62
dm command 63, 140
doze command 141
dump command 63
dw command 64
dx command 64
entering commands 9
error messages 36
exit command 141
export command 141
expression language 17, 53
fb command 64
feature command 142
fill command 65
findrecord command 143
fl command 65
flow control commands 25
free command 144
ft command 66
fw command 66
g command 67
gdb command 144
getresource command 144

gremlin command 145
gremlinoff command 145
gt command 67
hc command 145
hchk command 68, 146
hd command 68, 146
heap and database commands 28
help command 70, 148
hf command 148
hi command 148
hl command 70, 149
hs command 149
ht command 71, 150
htorture command 150
il command 71
import command 151
importing system extensions and libraries 48
info command 72, 153
keywords command 73
kinfo command 153
launch command 154
listrecords command 155
listresources command 155
load command 73
lock command 155
log command 156
mdebug command 156
menus 10
moverecord command 157
new command 158
numeric and address values 53, 130
numeric values 14
open command 158
opened command 74, 159
penv command 74
performance command 159
performing calculations 38
poweron command 160
predefined constants 89
reg command 75
register variables 21
repeating commands 38
reset command 75, 160
resize command 161
run command 76
s command 76
save command 76

Palm OS Programming Development Tools Guide 201

saveimages command 161
sb command 77, 161
sc command 77
sc6 command 78
sc7 command 78
script files 31
setinfo command 162
setowner command 162
setrecordinfo command 163
setresourceinfo command 163
shortcut characters 22
shortcut characters in 38
simsync command 164
sizeof command 79
sl command 79
sleep command 164
source debugging limitations 36
source menu 34
source window 3, 32
ss command 80
storeinfo command 80, 164
structure templates 29
sw command 81
switch command 165
symbol files 33
sysalarmdump command 165
t command 81
templates command 82
tips and examples 37
typedef command 82
typeend command 83
unary operators 19
unlock command 166
using 1
using console and debugging windows 8
using the debugging window 15
var command 83
variables command 84
wh command 84
windows 3

Palm reporter 171
patch overlay 186
penv command 74
performance command 159
performing calculations in Palm Debugger 38
poweron command 160

PRC2OVL 184, 186
help 189
option summary 187

PRC-to-OVL tool 181

R
Read Memory 107
Read Registers 108
reg command 75
register variables 21
reporter 171

about 171
adding trace calls 173
downloading 172
features 171
filtering information 177
functions 178
installation errors 179
installing 172
package file contents 172
sample code 175
session window 177
toolbar 178
trace session 176
trace strings 174
troubleshooting 179
using emulator 176

reset command 75, 160
resize command 161
resource tools 191
RPC 109
run command 76

S
s command 76
save command 76
saveimages command 161
sb command 77, 161
sc command 77
sc6 command 78
sc7 command 78
script files 31
Set Breakpoints 110
Set Trap Breaks 111

202 Palm OS Programming Development Tools Guide

Set Trap Conditionals 112
setinfo command 162
setowner command 162
setownerinfo command 163
setresourceinfo command 163
shortcut characters in Palm Debugger 38
shortcut number 6, 123
shortcut numbers 6, 123
simple data types 193
simsync command 164
sizeof command 79
sl command 79
sleep command 164
SmallROM 5
soft reset 8, 125
source window 3, 32

and symbol files 33
context menu 35
debugging limitations 36
debugging with 33
menu 34

specifying Palm Debugger numeric and address
value 53, 130

specifying Palm Debugger options 52, 129
ss command 80
State 113
state constants 95
storeinfo command 80, 164
structure templates 29
sw command 81
switch command 165
symbol files

using 33
sysalarmdump command 165
SysPktBodyCommon structure 97
SysPktBodyType structure 97

SysPktRPCParamType structure 98
system extensions

importing 48
system libraries

importing 48

T
t command 81
templates 29
templates command 82
Toggle Debugger Breaks 115
trace analysis 171
trace strings 174
tracing

sample code 175
tracing applications 171
typedef command 82
typeend command 83

U
unary operators 19
unlock command 166
using reporter 171

V
var command 83
variables 88
variables command 84

W
wh command 84
windows

in Palm Debugger 3
Write Memory 116
Write Registers 117

Palm OS Programming Development Tools Guide 203

	Palm OS® Programming Development Tools Guide
	Table of Contents
	About This Document
	Palm OS Documentation
	What This Volume Contains
	Summary of Changes
	Additional Resources

	Using Palm Debugger
	About Palm Debugger
	Connecting Palm Debugger With a Target
	Connecting to The Palm OS Emulator
	Connecting to The Handheld Device
	Using the Console and Debugging Windows Together

	Entering Palm Debugger Commands
	Palm Debugger Menus
	Palm Debugger Command Syntax

	Using the Debugging Window
	Using Debugger Expressions
	Performing Basic Debugging Tasks
	Advanced Debugging Features

	Using the Source Window
	Debugging With the Source Window
	Using Symbol Files
	Using the Source Menu
	Source Window Debugging Limitations

	Palm Debugger Error Messages
	Palm Debugger Tips and Examples
	Performing Calculations
	Shortcut Characters
	Repeating Commands
	Finding a Specific Function
	Finding Memory Corruption Problems
	Displaying Local Variables and Function Parameters
	Changing the Baud Rate Used by Palm Debugger
	Debugging Applications That Use the Serial Port
	Importing System Extensions and Libraries
	Determining the Current Location Within an Application

	Palm Debugger Command Reference
	Command Syntax
	Specifying Numeric and Address Values
	Using the Expression Language

	Debugging Window Commands
	>
	alias
	aliases
	atb
	atc
	atd
	atr
	att
	bootstrap
	br
	brc
	brd
	cardinfo
	cl
	db
	dir
	dl
	dm
	dump
	dw
	dx
	fb
	fill
	fl
	ft
	fw
	g
	gt
	hchk
	hd
	help
	hl
	ht
	il
	info
	keywords
	load
	opened
	penv
	reg
	reset
	run
	s
	save
	sb
	sc
	sc6
	sc7
	sizeof
	sl
	ss
	storeinfo
	sw
	t
	templates
	typedef
	typeend
	var
	variables
	wh

	Debugging Command Summary
	Flow Control Commands
	Memory Commands
	Template Commands
	Register Commands
	Utility Commands
	Console Commands
	Miscellaneous Debugger Commands
	Debugger Environment Variables
	Predefined Constants

	Debugger Protocol Reference
	About the Palm Debugger Protocol
	Packets
	Packet Structure
	Packet Communications

	Constants
	Packet Constants
	State Constants
	Breakpoint Constants
	Command Constants

	Data Structures
	_SysPktBodyCommon
	SysPktBodyType
	SysPktRPCParamType
	BreakpointType

	Debugger Protocol Commands
	Continue
	Find
	Get Breakpoints
	Get Routine Name
	Get Trap Breaks
	Get Trap Conditionals
	Message
	Read Memory
	Read Registers
	RPC
	Set Breakpoints
	Set Trap Breaks
	Set Trap Conditionals
	State
	Toggle Debugger Breaks
	Write Memory
	Write Registers

	Summary of Debugger Protocol Packets

	Using the Console Window
	About the Console Window
	Connecting the Console Window
	Activating Console Input
	Using Shortcut Numbers to Activate the Windows

	Entering Console Window Commands
	Command Syntax
	Specifying Numeric and Address Values

	Console Window Commands
	addrecord
	addresource
	attachrecord
	attachresource
	battery
	cardformat
	cardinfo
	changerecord
	changeresource
	close
	coldboot
	create
	del
	delrecord
	delresource
	detachrecord
	detachresource
	dir
	dm
	doze
	exit
	export
	feature
	findrecord
	free
	gdb
	getresource
	gremlin
	gremlinoff
	hc
	hchk
	hd
	help
	hf
	hi
	hl
	hs
	ht
	htorture
	import
	info
	kinfo
	launch
	listrecords
	listresources
	lock
	log
	mdebug
	moverecord
	new
	open
	opened
	performance
	poweron
	reset
	resize
	saveimages
	sb
	setinfo
	setowner
	setrecordinfo
	setresourceinfo
	simsync
	sleep
	storeinfo
	switch
	sysalarmdump
	unlock

	Console Command Summary
	Card Information Commands
	Chunk Utility Commands
	Database Utility Commands
	Debugging Utility Commands
	Gremlin Commands
	Heap Utility Commands
	Host Control Commands
	Miscellaneous Utility Commands
	Record Utility Commands
	Resource Utility Commands
	System Commands

	Using Palm Reporter
	About Palm Reporter
	Palm Reporter Features

	Downloading Palm Reporter
	Palm Reporter Package Files
	Installing Palm Reporter

	Adding Trace Calls to Your Application
	Specifying Trace Strings
	Trace Functions in a Code Sample

	Displaying Trace Information in Palm Reporter
	Starting a Palm Reporter Session
	Filtering Information in a Palm Reporter Session
	Using the Palm Reporter Toolbar

	Troubleshooting Palm Reporter

	Using the Overlay Tools
	Using Overlays to Localize Resources
	Overlay Database Names
	Overlay Specification Resources

	About the Overlay Tools
	Using the PRC-to-Overlay Function
	How the PRC-to-Overlay Function Works
	Choosing a Locale
	Modifying the Filter Set
	PRC2OVL Example

	Using the Patch Overlay Function
	PRC2OVL Options Summary
	Getting Help

	Using PRC2OVL on the Macintosh
	Opening a PRC file
	Selecting Resources

	Resource Tools
	Simple Data Types
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

